Got it to successfully create individual bounding boxes for a whole mask
Browse files- app.py +5 -5
- understand.py +74 -0
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import torch
|
|
| 6 |
import pathlib
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
-
from transformers import DetrFeatureExtractor, DetrForSegmentation,
|
| 10 |
from transformers.models.detr.feature_extraction_detr import rgb_to_id
|
| 11 |
|
| 12 |
|
|
@@ -73,15 +73,15 @@ def segment_images(model_name,url_input,image_input,threshold):
|
|
| 73 |
pass
|
| 74 |
elif "maskformer" in model_name.lower():
|
| 75 |
# Load the processor and model
|
| 76 |
-
processor =
|
| 77 |
-
print(type(processor))
|
| 78 |
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
|
| 79 |
|
| 80 |
inputs = processor(images=image, return_tensors="pt")
|
| 81 |
|
| 82 |
outputs = model(**inputs)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
pass
|
| 86 |
else:
|
| 87 |
raise NameError("Model is not implemented")
|
|
|
|
| 6 |
import pathlib
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
+
from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
|
| 10 |
from transformers.models.detr.feature_extraction_detr import rgb_to_id
|
| 11 |
|
| 12 |
|
|
|
|
| 73 |
pass
|
| 74 |
elif "maskformer" in model_name.lower():
|
| 75 |
# Load the processor and model
|
| 76 |
+
processor = MaskFormerImageProcessor.from_pretrained(model_name)
|
| 77 |
+
# print(type(processor))
|
| 78 |
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
|
| 79 |
|
| 80 |
inputs = processor(images=image, return_tensors="pt")
|
| 81 |
|
| 82 |
outputs = model(**inputs)
|
| 83 |
+
results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 84 |
+
|
| 85 |
pass
|
| 86 |
else:
|
| 87 |
raise NameError("Model is not implemented")
|
understand.py
CHANGED
|
@@ -63,6 +63,67 @@ results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[im
|
|
| 63 |
# type(results["segmentation"]) --> <class 'torch.Tensor'>
|
| 64 |
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# From Tutorial (Box 79)
|
| 68 |
# def get_mask(segment_idx):
|
|
@@ -129,4 +190,17 @@ array([[False, False, False, ..., False, False, False],
|
|
| 129 |
>>> results["segments_info"][0]
|
| 130 |
{'id': 1, 'label_id': 25, 'was_fused': False, 'score': 0.998022}
|
| 131 |
>>>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
"""
|
|
|
|
| 63 |
# type(results["segmentation"]) --> <class 'torch.Tensor'>
|
| 64 |
|
| 65 |
|
| 66 |
+
def show_mask_for_number(map_to_use, label_id):
|
| 67 |
+
|
| 68 |
+
if torch.cuda.is_available():
|
| 69 |
+
mask = (map_to_use.cpu().numpy() == label_id)
|
| 70 |
+
else:
|
| 71 |
+
mask = (map_to_use.numpy() == label_id)
|
| 72 |
+
|
| 73 |
+
visual_mask = (mask* 255).astype(np.uint8)
|
| 74 |
+
visual_mask = Image.fromarray(visual_mask)
|
| 75 |
+
plt.imshow(visual_mask)
|
| 76 |
+
plt.show()
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def get_coordinates_for_bb_simple(map_to_use, label_id):
|
| 80 |
+
if torch.cuda.is_available():
|
| 81 |
+
mask = (map_to_use.cpu().numpy() == label_id)
|
| 82 |
+
else:
|
| 83 |
+
mask = (map_to_use.numpy() == label_id)
|
| 84 |
+
|
| 85 |
+
x, y = np.where(mask==True)
|
| 86 |
+
x_max, x_min = max(x), min(x)
|
| 87 |
+
y_max, y_min = max(y), min(y)
|
| 88 |
+
return (x_min, y_min), (x_max, y_max)
|
| 89 |
+
|
| 90 |
+
def make_simple_box(left_top, right_bottom, map_size):
|
| 91 |
+
full_mask = np.full(map_size, False)
|
| 92 |
+
left_x, top_y = left_top
|
| 93 |
+
right_x, bottom_y = right_bottom
|
| 94 |
+
full_mask[left_x:right_x, top_y] = True
|
| 95 |
+
full_mask[left_x:right_x, bottom_y] = True
|
| 96 |
+
full_mask[left_x, top_y:bottom_y] = True
|
| 97 |
+
full_mask[right_x, top_y:bottom_y] = True
|
| 98 |
+
|
| 99 |
+
visual_mask = (full_mask* 255).astype(np.uint8)
|
| 100 |
+
visual_mask = Image.fromarray(visual_mask)
|
| 101 |
+
plt.imshow(visual_mask)
|
| 102 |
+
plt.show()
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def test(map_to_use, label_id):
|
| 106 |
+
if torch.cuda.is_available():
|
| 107 |
+
mask = (map_to_use.cpu().numpy() == label_id)
|
| 108 |
+
else:
|
| 109 |
+
mask = (map_to_use.numpy() == label_id)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
lt, rb = get_coordinates_for_bb_simple(map_to_use, label_id)
|
| 113 |
+
left_x, top_y = lt
|
| 114 |
+
right_x, bottom_y = rb
|
| 115 |
+
|
| 116 |
+
mask[left_x:right_x, top_y] = .5
|
| 117 |
+
mask[left_x:right_x, bottom_y] = .5
|
| 118 |
+
mask[left_x, top_y:bottom_y] = .5
|
| 119 |
+
mask[right_x, top_y:bottom_y] = .5
|
| 120 |
+
|
| 121 |
+
visual_mask = (mask* 255).astype(np.uint8)
|
| 122 |
+
visual_mask = Image.fromarray(visual_mask)
|
| 123 |
+
plt.imshow(visual_mask)
|
| 124 |
+
plt.show()
|
| 125 |
+
|
| 126 |
+
|
| 127 |
|
| 128 |
# From Tutorial (Box 79)
|
| 129 |
# def get_mask(segment_idx):
|
|
|
|
| 190 |
>>> results["segments_info"][0]
|
| 191 |
{'id': 1, 'label_id': 25, 'was_fused': False, 'score': 0.998022}
|
| 192 |
>>>
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
>>> np.where(mask==True)
|
| 197 |
+
(array([300, 300, 300, ..., 392, 392, 392]), array([452, 453, 454, ..., 473, 474, 475]))
|
| 198 |
+
>>> max(np.where(mask==True)[0])
|
| 199 |
+
392
|
| 200 |
+
>>> min(np.where(mask==True)[0])
|
| 201 |
+
300
|
| 202 |
+
>>> max(np.where(mask==True)[1])
|
| 203 |
+
538
|
| 204 |
+
>>> min(np.where(mask==True)[1])
|
| 205 |
+
399
|
| 206 |
"""
|