import matplotlib.pyplot as plt import requests, validators import torch import pathlib import numpy as np from PIL import Image from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation # from transformers.models.detr.feature_extraction_detr import rgb_to_id from transformers.image_transforms import rgb_to_id TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG") MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic" MODEL_NAME_MASKFORMER = "facebook/maskformer-swin-large-coco" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") ####### # Parameters ####### image = TEST_IMAGE model_name = MODEL_NAME_MASKFORMER # Starting with MaskFormer processor = MaskFormerImageProcessor.from_pretrained(model_name) # # DIR() --> ['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', # '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', # '__weakref__', '_auto_class', '_create_repo', '_get_files_timestamps', '_max_size', '_pad_image', '_preprocess', '_preprocess_image', '_preprocess_mask', '_processor_class', # '_set_processor_class', '_upload_modified_files', 'center_crop', 'convert_segmentation_map_to_binary_masks', 'do_normalize', 'do_reduce_labels', 'do_rescale', 'do_resize', # 'encode_inputs', 'fetch_images', 'from_dict', 'from_json_file', 'from_pretrained', 'get_image_processor_dict', 'ignore_index', 'image_mean', 'image_std', 'model_input_names', # 'normalize', 'pad', 'post_process_instance_segmentation', 'post_process_panoptic_segmentation', 'post_process_segmentation', 'post_process_semantic_segmentation', 'preprocess', # 'push_to_hub', 'register_for_auto_class', 'resample', 'rescale', 'rescale_factor', 'resize', 'save_pretrained', 'size', 'size_divisor', 'to_dict', 'to_json_file', 'to_json_string'] model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) # # DIR for model was too big model.to(DEVICE) # img = np.array(TEST_IMAGE) inputs = processor(images=image, return_tensors="pt") # # DIR() --> ['_MutableMapping__marker', '__abstractmethods__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', # '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', # '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__slots__', '__str__', # '__subclasshook__', '__weakref__', '_abc_impl', '_get_is_as_tensor_fns', 'clear', 'convert_to_tensors', 'copy', 'data', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', # 'setdefault', 'to', 'update', 'values'] inputs.to(DEVICE) outputs = model(**inputs) # # Each element of this class is a # DIR() --> ['__annotations__', '__class__', '__contains__', '__dataclass_fields__', '__dataclass_params__', '__delattr__', '__delitem__', '__dict__', '__dir__', # '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', # '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__post_init__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', # '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'attentions', 'auxiliary_logits', 'class_queries_logits', 'clear', 'copy', 'encoder_hidden_states', # 'encoder_last_hidden_state', 'fromkeys', 'get', 'hidden_states', 'items', 'keys', 'loss', 'masks_queries_logits', 'move_to_end', 'pixel_decoder_hidden_states', # 'pixel_decoder_last_hidden_state', 'pop', 'popitem', 'setdefault', 'to_tuple', 'transformer_decoder_hidden_states', 'transformer_decoder_last_hidden_state', # 'update', 'values'] results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # # Example of # From Tutorial (Box 79) # def get_mask(segment_idx): # segment = results['segments_info'][segment_idx] # print("Visualizing mask for:", id2label[segment['label_id']]) # mask = (predicted_panoptic_seg == segment['id']) # visual_mask = (mask * 255).astype(np.uint8) # return Image.fromarray(visual_mask)