import matplotlib.pyplot as plt import requests, validators import torch import pathlib import numpy as np from PIL import Image from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation from transformers.models.detr.feature_extraction_detr import rgb_to_id TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG") MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic" MODEL_NAME_MASKFORMER = "facebook/maskformer-swin-large-coco" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") ####### # Parameters ####### image = TEST_IMAGE model_name = MODEL_NAME_MASKFORMER # Starting with MaskFormer processor = MaskFormerImageProcessor.from_pretrained(model_name) model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) model.to(DEVICE) # img = np.array(TEST_IMAGE) inputs = processor(images=image, return_tensors="pt") inputs.to(DEVICE) outputs = model(**inputs)