initial commit
Browse files- app.py +72 -0
- packages.txt +1 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from paddleocr import PaddleOCR
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers.pipelines.document_question_answering import apply_tesseract
|
8 |
+
|
9 |
+
PIPE = pipeline("document-question-answering", "impira/layoutlm-document-qa")
|
10 |
+
OCR = PaddleOCR(
|
11 |
+
use_angle_cls=True,
|
12 |
+
lang="en",
|
13 |
+
det_limit_side_len=10_000,
|
14 |
+
det_db_score_mode="slow",
|
15 |
+
enable_mlkdnn=True,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
PADDLE_OCR_LABEL = "PaddleOCR (en)"
|
20 |
+
TESSERACT_LABEL = "Tesseract (HF default)"
|
21 |
+
|
22 |
+
|
23 |
+
def predict(image: Image.Image, question: str, ocr_engine: str):
|
24 |
+
image_np = np.asarray(image)
|
25 |
+
|
26 |
+
if ocr_engine == PADDLE_OCR_LABEL:
|
27 |
+
ocr_result = OCR.ocr(image_np)[0]
|
28 |
+
words = [x[1][0] for x in ocr_result]
|
29 |
+
boxes = np.asarray([x[0] for x in ocr_result]) # (n_boxes, 4, 2)
|
30 |
+
|
31 |
+
for box in boxes:
|
32 |
+
cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3)
|
33 |
+
|
34 |
+
x1 = boxes[:, :, 0].min(1) * 1000 / image.width
|
35 |
+
y1 = boxes[:, :, 1].min(1) * 1000 / image.height
|
36 |
+
x2 = boxes[:, :, 0].max(1) * 1000 / image.width
|
37 |
+
y2 = boxes[:, :, 1].max(1) * 1000 / image.height
|
38 |
+
|
39 |
+
# (n_boxes, 4) in xyxy format
|
40 |
+
boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int)
|
41 |
+
|
42 |
+
elif ocr_engine == TESSERACT_LABEL:
|
43 |
+
words, boxes = apply_tesseract(image, None, "")
|
44 |
+
|
45 |
+
for x1, y1, x2, y2 in boxes:
|
46 |
+
x1 = int(x1 * image.width / 1000)
|
47 |
+
y1 = int(y1 * image.height / 1000)
|
48 |
+
x2 = int(x2 * image.width / 1000)
|
49 |
+
y2 = int(y2 * image.height / 1000)
|
50 |
+
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3)
|
51 |
+
|
52 |
+
else:
|
53 |
+
raise ValueError(f"Unsupported ocr_engine={ocr_engine}")
|
54 |
+
|
55 |
+
word_boxes = list(zip(words, boxes))
|
56 |
+
result = PIPE(image, question, word_boxes)[0]
|
57 |
+
return result["answer"], result["score"], image_np
|
58 |
+
|
59 |
+
|
60 |
+
gr.Interface(
|
61 |
+
fn=predict,
|
62 |
+
inputs=[
|
63 |
+
gr.Image(type="pil"),
|
64 |
+
"text",
|
65 |
+
gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]),
|
66 |
+
],
|
67 |
+
outputs=[
|
68 |
+
gr.Textbox(label="Answer"),
|
69 |
+
gr.Number(label="Score"),
|
70 |
+
gr.Image(label="OCR results"),
|
71 |
+
],
|
72 |
+
).launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tesseract-ocr5
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://mirror.baidu.com/pypi/simple
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
paddlepaddle==2.5.1
|
6 |
+
paddleocr
|
7 |
+
opencv-python-headless
|
8 |
+
pytesseract
|