Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.impute import SimpleImputer
|
9 |
+
from io import BytesIO
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
# Function to read and process uploaded file
|
15 |
+
def read_file(file):
|
16 |
+
if file.name.endswith(".csv"):
|
17 |
+
df = pd.read_csv(file)
|
18 |
+
elif file.name.endswith(".xlsx"):
|
19 |
+
df = pd.read_excel(file)
|
20 |
+
else:
|
21 |
+
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
|
22 |
+
return df
|
23 |
+
|
24 |
+
# Clean the data
|
25 |
+
def clean_data(df):
|
26 |
+
# Drop duplicates
|
27 |
+
df = df.drop_duplicates()
|
28 |
+
# Fill missing values
|
29 |
+
imputer = SimpleImputer(strategy="most_frequent")
|
30 |
+
df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
|
31 |
+
return df
|
32 |
+
|
33 |
+
# Generate summary statistics
|
34 |
+
def generate_summary(df):
|
35 |
+
return df.describe(include="all").transpose()
|
36 |
+
|
37 |
+
# Correlation heatmap
|
38 |
+
def generate_correlation_heatmap(df):
|
39 |
+
numeric_df = df.select_dtypes(include=[np.number])
|
40 |
+
corr = numeric_df.corr()
|
41 |
+
plt.figure(figsize=(10, 8))
|
42 |
+
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f")
|
43 |
+
buf = BytesIO()
|
44 |
+
plt.savefig(buf, format="png")
|
45 |
+
buf.seek(0)
|
46 |
+
plt.close()
|
47 |
+
return buf
|
48 |
+
|
49 |
+
# Feature importance using Random Forest
|
50 |
+
def feature_importance(df):
|
51 |
+
# Encode categorical variables
|
52 |
+
df_encoded = df.copy()
|
53 |
+
label_encoders = {}
|
54 |
+
for col in df_encoded.select_dtypes(include="object").columns:
|
55 |
+
le = LabelEncoder()
|
56 |
+
df_encoded[col] = le.fit_transform(df_encoded[col])
|
57 |
+
label_encoders[col] = le
|
58 |
+
|
59 |
+
# Target variable selection
|
60 |
+
target_column = df_encoded.columns[-1]
|
61 |
+
X = df_encoded.iloc[:, :-1]
|
62 |
+
y = df_encoded[target_column]
|
63 |
+
|
64 |
+
# Fit Random Forest
|
65 |
+
model = RandomForestClassifier(random_state=42)
|
66 |
+
model.fit(X, y)
|
67 |
+
|
68 |
+
# Get feature importance
|
69 |
+
importance = pd.DataFrame({
|
70 |
+
"Feature": X.columns,
|
71 |
+
"Importance": model.feature_importances_
|
72 |
+
}).sort_values(by="Importance", ascending=False)
|
73 |
+
|
74 |
+
return importance
|
75 |
+
|
76 |
+
# Visualize feature importance
|
77 |
+
def plot_feature_importance(importance):
|
78 |
+
plt.figure(figsize=(10, 6))
|
79 |
+
sns.barplot(x="Importance", y="Feature", data=importance)
|
80 |
+
plt.title("Feature Importance")
|
81 |
+
buf = BytesIO()
|
82 |
+
plt.savefig(buf, format="png")
|
83 |
+
buf.seek(0)
|
84 |
+
plt.close()
|
85 |
+
return buf
|
86 |
+
|
87 |
+
# Main analysis function
|
88 |
+
def analyze_file(file):
|
89 |
+
try:
|
90 |
+
# Step 1: Read file
|
91 |
+
df = read_file(file)
|
92 |
+
|
93 |
+
# Step 2: Clean data
|
94 |
+
df_cleaned = clean_data(df)
|
95 |
+
|
96 |
+
# Step 3: Generate summary statistics
|
97 |
+
summary = generate_summary(df_cleaned)
|
98 |
+
|
99 |
+
# Step 4: Generate correlation heatmap
|
100 |
+
heatmap_buf = generate_correlation_heatmap(df_cleaned)
|
101 |
+
|
102 |
+
# Step 5: Feature importance analysis
|
103 |
+
importance = feature_importance(df_cleaned)
|
104 |
+
importance_plot_buf = plot_feature_importance(importance)
|
105 |
+
|
106 |
+
# Step 6: Return results
|
107 |
+
return (
|
108 |
+
summary,
|
109 |
+
heatmap_buf,
|
110 |
+
importance.head(10), # Top 10 important features
|
111 |
+
importance_plot_buf,
|
112 |
+
)
|
113 |
+
except Exception as e:
|
114 |
+
return str(e)
|
115 |
+
|
116 |
+
# Gradio Interface
|
117 |
+
def gradio_interface():
|
118 |
+
with gr.Blocks() as interface:
|
119 |
+
gr.Markdown("# AI Data Analytics Tool")
|
120 |
+
gr.Markdown("Upload your dataset in CSV or Excel format to analyze and generate insights automatically.")
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
file_input = gr.File(label="Upload your CSV or Excel file")
|
124 |
+
analyze_button = gr.Button("Analyze")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
summary_output = gr.Dataframe(label="Summary Statistics")
|
128 |
+
heatmap_output = gr.Image(label="Correlation Heatmap")
|
129 |
+
importance_output = gr.Dataframe(label="Feature Importance")
|
130 |
+
importance_plot_output = gr.Image(label="Feature Importance Plot")
|
131 |
+
|
132 |
+
analyze_button.click(
|
133 |
+
analyze_file,
|
134 |
+
inputs=file_input,
|
135 |
+
outputs=[summary_output, heatmap_output, importance_output, importance_plot_output],
|
136 |
+
)
|
137 |
+
|
138 |
+
return interface
|
139 |
+
|
140 |
+
# Launch the Gradio interface
|
141 |
+
interface = gradio_interface()
|
142 |
+
interface.launch(debug=True)
|