Spaces:
Sleeping
Sleeping
Update warp_design_on_dress.py
Browse files- warp_design_on_dress.py +46 -58
warp_design_on_dress.py
CHANGED
@@ -3,13 +3,15 @@ import torch
|
|
3 |
import torch.nn.functional as F
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
-
|
|
|
7 |
from preprocessing import pad_to_22_channels
|
8 |
|
9 |
def run_design_warp_on_dress(dress_path, design_path, gmm_ckpt, tom_ckpt, output_dir):
|
10 |
os.makedirs(output_dir, exist_ok=True)
|
11 |
-
|
12 |
-
|
|
|
13 |
im_h, im_w = 256, 192
|
14 |
tf = transforms.Compose([
|
15 |
transforms.Resize((im_h, im_w)),
|
@@ -17,39 +19,28 @@ def run_design_warp_on_dress(dress_path, design_path, gmm_ckpt, tom_ckpt, output
|
|
17 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
18 |
])
|
19 |
|
20 |
-
# Load
|
21 |
-
|
22 |
-
|
23 |
-
design_img = Image.open(design_path).convert("RGB")
|
24 |
-
except Exception as e:
|
25 |
-
raise ValueError(f"Error loading images: {str(e)}")
|
26 |
-
|
27 |
-
# Convert to tensors
|
28 |
-
dress_tensor = tf(dress_img).unsqueeze(0).cpu()
|
29 |
-
design_tensor = tf(design_img).unsqueeze(0).cpu()
|
30 |
-
design_mask = torch.ones_like(design_tensor[:, :1, :, :])
|
31 |
-
|
32 |
-
# Prepare agnostic (dress image)
|
33 |
-
agnostic = dress_tensor.clone()
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# GMM Processing
|
|
|
40 |
gmm = GMM(opt).to(device)
|
41 |
load_checkpoint(gmm, gmm_ckpt, strict=False)
|
42 |
gmm.eval()
|
43 |
|
44 |
-
# Convert to required channels and move to device
|
45 |
-
agnostic_22ch = pad_to_22_channels(agnostic).contiguous().to(device)
|
46 |
-
design_mask_22ch = pad_to_22_channels(design_mask).contiguous().to(device)
|
47 |
-
design_tensor = design_tensor.to(device)
|
48 |
-
design_mask = design_mask.to(device)
|
49 |
-
|
50 |
with torch.no_grad():
|
51 |
-
|
52 |
-
grid, _ = gmm(agnostic_22ch, design_mask_22ch)
|
53 |
warped_design = F.grid_sample(
|
54 |
design_tensor,
|
55 |
grid,
|
@@ -64,43 +55,40 @@ def run_design_warp_on_dress(dress_path, design_path, gmm_ckpt, tom_ckpt, output
|
|
64 |
)
|
65 |
|
66 |
# TOM Processing
|
67 |
-
tom = TOM(opt).to(device)
|
68 |
load_checkpoint(tom, tom_ckpt, strict=False)
|
69 |
tom.eval()
|
70 |
|
71 |
with torch.no_grad():
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
# Combine
|
81 |
tom_input = torch.cat([
|
82 |
-
|
83 |
-
warped_design,
|
84 |
-
warped_mask,
|
85 |
-
gray,
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
], dim=1)
|
90 |
|
91 |
-
#
|
92 |
p_rendered, m_composite = tom(tom_input)
|
93 |
tryon = warped_design * m_composite + p_rendered * (1 - m_composite)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
except Exception as e:
|
106 |
-
raise ValueError(f"Error saving output image: {str(e)}")
|
|
|
3 |
import torch.nn.functional as F
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
from networks import GMM, TOM, load_checkpoint, Options
|
8 |
from preprocessing import pad_to_22_channels
|
9 |
|
10 |
def run_design_warp_on_dress(dress_path, design_path, gmm_ckpt, tom_ckpt, output_dir):
|
11 |
os.makedirs(output_dir, exist_ok=True)
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
|
14 |
+
# Preprocessing
|
15 |
im_h, im_w = 256, 192
|
16 |
tf = transforms.Compose([
|
17 |
transforms.Resize((im_h, im_w)),
|
|
|
19 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
20 |
])
|
21 |
|
22 |
+
# Load images
|
23 |
+
dress_img = Image.open(dress_path).convert("RGB")
|
24 |
+
design_img = Image.open(design_path).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Convert to tensors
|
27 |
+
dress_tensor = tf(dress_img).unsqueeze(0).to(device)
|
28 |
+
design_tensor = tf(design_img).unsqueeze(0).to(device)
|
29 |
|
30 |
+
# Create design mask (assuming design covers entire area)
|
31 |
+
design_mask = torch.ones_like(design_tensor[:, :1, :, :]).to(device)
|
32 |
+
|
33 |
+
# Prepare agnostic input (dress image)
|
34 |
+
agnostic = pad_to_22_channels(dress_tensor).to(device)
|
35 |
+
|
36 |
# GMM Processing
|
37 |
+
opt = Options()
|
38 |
gmm = GMM(opt).to(device)
|
39 |
load_checkpoint(gmm, gmm_ckpt, strict=False)
|
40 |
gmm.eval()
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
with torch.no_grad():
|
43 |
+
grid, _ = gmm(agnostic, design_mask)
|
|
|
44 |
warped_design = F.grid_sample(
|
45 |
design_tensor,
|
46 |
grid,
|
|
|
55 |
)
|
56 |
|
57 |
# TOM Processing
|
58 |
+
tom = TOM(opt).to(device)
|
59 |
load_checkpoint(tom, tom_ckpt, strict=False)
|
60 |
tom.eval()
|
61 |
|
62 |
with torch.no_grad():
|
63 |
+
# Create simplified feature inputs
|
64 |
+
gray = dress_tensor.mean(dim=1, keepdim=True)
|
65 |
+
edges = torch.abs(F.conv2d(
|
66 |
+
gray,
|
67 |
+
torch.tensor([[[[-1,-1,-1],[-1,8,-1],[-1,-1,-1]]], dtype=torch.float32, device=device),
|
68 |
+
padding=1
|
69 |
+
))
|
70 |
|
71 |
+
# Combine inputs (agnostic + warped design + warped mask + features)
|
72 |
tom_input = torch.cat([
|
73 |
+
dress_tensor, # 3 channels
|
74 |
+
warped_design, # 3 channels
|
75 |
+
warped_mask, # 1 channel
|
76 |
+
gray, # 1 channel
|
77 |
+
edges, # 1 channel
|
78 |
+
torch.zeros_like(dress_tensor)[:, :17] # 17 dummy channels
|
79 |
+
], dim=1) # Total: 3+3+1+1+1+17 = 26 channels
|
|
|
80 |
|
81 |
+
# Generate try-on result
|
82 |
p_rendered, m_composite = tom(tom_input)
|
83 |
tryon = warped_design * m_composite + p_rendered * (1 - m_composite)
|
84 |
|
85 |
+
# Convert to PIL image
|
86 |
+
tryon = tryon.squeeze().detach().cpu()
|
87 |
+
tryon = (tryon.permute(1, 2, 0).numpy() + 1) * 127.5
|
88 |
+
tryon = np.clip(tryon, 0, 255).astype("uint8")
|
89 |
+
out_pil = Image.fromarray(tryon)
|
90 |
+
|
91 |
+
# Save output
|
92 |
+
output_path = os.path.join(output_dir, "tryon.jpg")
|
93 |
+
out_pil.save(output_path)
|
94 |
+
return output_path
|
|
|
|