Spaces:
Sleeping
Sleeping
Create warp_design_on_dress.py
Browse files- warp_design_on_dress.py +62 -0
warp_design_on_dress.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
from networks import GMM, UnetGenerator, load_checkpoint
|
7 |
+
|
8 |
+
|
9 |
+
def run_design_warp_on_dress(dress_path, design_path, gmm_ckpt, tom_ckpt, output_dir):
|
10 |
+
os.makedirs(output_dir, exist_ok=True)
|
11 |
+
|
12 |
+
# Preprocessing
|
13 |
+
im_h, im_w = 256, 192
|
14 |
+
tf = transforms.Compose([
|
15 |
+
transforms.Resize((im_h, im_w)),
|
16 |
+
transforms.ToTensor()
|
17 |
+
])
|
18 |
+
|
19 |
+
dress_img = Image.open(dress_path).convert("RGB")
|
20 |
+
design_img = Image.open(design_path).convert("RGB")
|
21 |
+
|
22 |
+
dress_tensor = tf(dress_img).unsqueeze(0).cuda()
|
23 |
+
design_tensor = tf(design_img).unsqueeze(0).cuda()
|
24 |
+
design_mask = torch.ones_like(design_tensor[:, :1, :, :]) # full white mask
|
25 |
+
|
26 |
+
# Fake agnostic: use the dress image itself
|
27 |
+
agnostic = dress_tensor.clone()
|
28 |
+
|
29 |
+
# ----- GMM -----
|
30 |
+
gmm = GMM(opt=None)
|
31 |
+
load_checkpoint(gmm, gmm_ckpt)
|
32 |
+
gmm.cuda().eval()
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
grid, _ = gmm(agnostic, design_mask)
|
36 |
+
warped_design = F.grid_sample(design_tensor, grid, padding_mode='border')
|
37 |
+
warped_mask = F.grid_sample(design_mask, grid, padding_mode='zeros')
|
38 |
+
|
39 |
+
# ----- TOM -----
|
40 |
+
tom = UnetGenerator(26, 4, 6, ngf=64, norm_layer=torch.nn.InstanceNorm2d)
|
41 |
+
load_checkpoint(tom, tom_ckpt)
|
42 |
+
tom.cuda().eval()
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
tom_input = torch.cat([agnostic, warped_design, warped_mask], 1)
|
46 |
+
output = tom(tom_input)
|
47 |
+
|
48 |
+
p_rendered, m_composite = torch.split(output, 3, 1)
|
49 |
+
p_rendered = torch.tanh(p_rendered)
|
50 |
+
m_composite = torch.sigmoid(m_composite)
|
51 |
+
|
52 |
+
tryon = warped_design * m_composite + p_rendered * (1 - m_composite)
|
53 |
+
|
54 |
+
# Save output
|
55 |
+
out_img = tryon.squeeze().permute(1, 2, 0).cpu().numpy()
|
56 |
+
out_img = (out_img * 255).astype("uint8")
|
57 |
+
out_pil = Image.fromarray(out_img)
|
58 |
+
|
59 |
+
output_path = os.path.join(output_dir, "tryon.jpg")
|
60 |
+
out_pil.save(output_path)
|
61 |
+
|
62 |
+
return output_path
|