Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- cp_dataset.py +263 -0
- grid.png +0 -0
cp_dataset.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
import torch
|
3 |
+
import torch.utils.data as data
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from PIL import ImageDraw
|
8 |
+
|
9 |
+
import os.path as osp
|
10 |
+
import numpy as np
|
11 |
+
import json
|
12 |
+
|
13 |
+
|
14 |
+
class CPDataset(data.Dataset):
|
15 |
+
"""Dataset for CP-VTON+.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, opt):
|
19 |
+
super(CPDataset, self).__init__()
|
20 |
+
# base setting
|
21 |
+
self.opt = opt
|
22 |
+
self.root = opt.dataroot
|
23 |
+
self.datamode = opt.datamode # train or test or self-defined
|
24 |
+
self.stage = opt.stage # GMM or TOM
|
25 |
+
self.data_list = opt.data_list
|
26 |
+
self.fine_height = opt.fine_height
|
27 |
+
self.fine_width = opt.fine_width
|
28 |
+
self.radius = opt.radius
|
29 |
+
self.data_path = osp.join(opt.dataroot, opt.datamode)
|
30 |
+
self.transform = transforms.Compose([
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
33 |
+
|
34 |
+
# load data list
|
35 |
+
im_names = []
|
36 |
+
c_names = []
|
37 |
+
with open(osp.join(opt.dataroot, opt.data_list), 'r') as f:
|
38 |
+
for line in f.readlines():
|
39 |
+
im_name, c_name = line.strip().split()
|
40 |
+
im_names.append(im_name)
|
41 |
+
c_names.append(c_name)
|
42 |
+
|
43 |
+
self.im_names = im_names
|
44 |
+
self.c_names = c_names
|
45 |
+
|
46 |
+
def name(self):
|
47 |
+
return "CPDataset"
|
48 |
+
|
49 |
+
def __getitem__(self, index):
|
50 |
+
c_name = self.c_names[index]
|
51 |
+
im_name = self.im_names[index]
|
52 |
+
if self.stage == 'GMM':
|
53 |
+
c = Image.open(osp.join(self.data_path, 'cloth', c_name))
|
54 |
+
cm = Image.open(osp.join(self.data_path, 'cloth-mask', c_name)).convert('L')
|
55 |
+
else:
|
56 |
+
c = Image.open(osp.join(self.data_path, 'warp-cloth', im_name)) # c_name, if that is used when saved
|
57 |
+
cm = Image.open(osp.join(self.data_path, 'warp-mask', im_name)).convert('L') # c_name, if that is used when saved
|
58 |
+
|
59 |
+
c = self.transform(c) # [-1,1]
|
60 |
+
cm_array = np.array(cm)
|
61 |
+
cm_array = (cm_array >= 128).astype(np.float32)
|
62 |
+
cm = torch.from_numpy(cm_array) # [0,1]
|
63 |
+
cm.unsqueeze_(0)
|
64 |
+
|
65 |
+
# person image
|
66 |
+
im = Image.open(osp.join(self.data_path, 'image', im_name))
|
67 |
+
im = self.transform(im) # [-1,1]
|
68 |
+
|
69 |
+
"""
|
70 |
+
LIP labels
|
71 |
+
|
72 |
+
[(0, 0, 0), # 0=Background
|
73 |
+
(128, 0, 0), # 1=Hat
|
74 |
+
(255, 0, 0), # 2=Hair
|
75 |
+
(0, 85, 0), # 3=Glove
|
76 |
+
(170, 0, 51), # 4=SunGlasses
|
77 |
+
(255, 85, 0), # 5=UpperClothes
|
78 |
+
(0, 0, 85), # 6=Dress
|
79 |
+
(0, 119, 221), # 7=Coat
|
80 |
+
(85, 85, 0), # 8=Socks
|
81 |
+
(0, 85, 85), # 9=Pants
|
82 |
+
(85, 51, 0), # 10=Jumpsuits
|
83 |
+
(52, 86, 128), # 11=Scarf
|
84 |
+
(0, 128, 0), # 12=Skirt
|
85 |
+
(0, 0, 255), # 13=Face
|
86 |
+
(51, 170, 221), # 14=LeftArm
|
87 |
+
(0, 255, 255), # 15=RightArm
|
88 |
+
(85, 255, 170), # 16=LeftLeg
|
89 |
+
(170, 255, 85), # 17=RightLeg
|
90 |
+
(255, 255, 0), # 18=LeftShoe
|
91 |
+
(255, 170, 0) # 19=RightShoe
|
92 |
+
(170, 170, 50) # 20=Skin/Neck/Chest (Newly added after running dataset_neck_skin_correction.py)
|
93 |
+
]
|
94 |
+
"""
|
95 |
+
|
96 |
+
# load parsing image
|
97 |
+
parse_name = im_name.replace('.jpg', '.png')
|
98 |
+
im_parse = Image.open(
|
99 |
+
# osp.join(self.data_path, 'image-parse', parse_name)).convert('L')
|
100 |
+
osp.join(self.data_path, 'image-parse-new', parse_name)).convert('L') # updated new segmentation
|
101 |
+
parse_array = np.array(im_parse)
|
102 |
+
im_mask = Image.open(
|
103 |
+
osp.join(self.data_path, 'image-mask', parse_name)).convert('L')
|
104 |
+
mask_array = np.array(im_mask)
|
105 |
+
|
106 |
+
# parse_shape = (parse_array > 0).astype(np.float32) # CP-VTON body shape
|
107 |
+
# Get shape from body mask (CP-VTON+)
|
108 |
+
parse_shape = (mask_array > 0).astype(np.float32)
|
109 |
+
|
110 |
+
if self.stage == 'GMM':
|
111 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
112 |
+
(parse_array == 4).astype(np.float32) + \
|
113 |
+
(parse_array == 13).astype(
|
114 |
+
np.float32) # CP-VTON+ GMM input (reserved regions)
|
115 |
+
else:
|
116 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
117 |
+
(parse_array == 2).astype(np.float32) + \
|
118 |
+
(parse_array == 4).astype(np.float32) + \
|
119 |
+
(parse_array == 9).astype(np.float32) + \
|
120 |
+
(parse_array == 12).astype(np.float32) + \
|
121 |
+
(parse_array == 13).astype(np.float32) + \
|
122 |
+
(parse_array == 16).astype(np.float32) + \
|
123 |
+
(parse_array == 17).astype(
|
124 |
+
np.float32) # CP-VTON+ TOM input (reserved regions)
|
125 |
+
|
126 |
+
parse_cloth = (parse_array == 5).astype(np.float32) + \
|
127 |
+
(parse_array == 6).astype(np.float32) + \
|
128 |
+
(parse_array == 7).astype(np.float32) # upper-clothes labels
|
129 |
+
|
130 |
+
# shape downsample
|
131 |
+
parse_shape_ori = Image.fromarray((parse_shape*255).astype(np.uint8))
|
132 |
+
parse_shape = parse_shape_ori.resize(
|
133 |
+
(self.fine_width//16, self.fine_height//16), Image.BILINEAR)
|
134 |
+
parse_shape = parse_shape.resize(
|
135 |
+
(self.fine_width, self.fine_height), Image.BILINEAR)
|
136 |
+
parse_shape_ori = parse_shape_ori.resize(
|
137 |
+
(self.fine_width, self.fine_height), Image.BILINEAR)
|
138 |
+
shape_ori = self.transform(parse_shape_ori) # [-1,1]
|
139 |
+
shape = self.transform(parse_shape) # [-1,1]
|
140 |
+
phead = torch.from_numpy(parse_head) # [0,1]
|
141 |
+
# phand = torch.from_numpy(parse_hand) # [0,1]
|
142 |
+
pcm = torch.from_numpy(parse_cloth) # [0,1]
|
143 |
+
|
144 |
+
# upper cloth
|
145 |
+
im_c = im * pcm + (1 - pcm) # [-1,1], fill 1 for other parts
|
146 |
+
im_h = im * phead - (1 - phead) # [-1,1], fill -1 for other parts
|
147 |
+
|
148 |
+
# load pose points
|
149 |
+
pose_name = im_name.replace('.jpg', '_keypoints.json')
|
150 |
+
with open(osp.join(self.data_path, 'pose', pose_name), 'r') as f:
|
151 |
+
pose_label = json.load(f)
|
152 |
+
pose_data = pose_label['people'][0]['pose_keypoints']
|
153 |
+
pose_data = np.array(pose_data)
|
154 |
+
pose_data = pose_data.reshape((-1, 3))
|
155 |
+
|
156 |
+
point_num = pose_data.shape[0]
|
157 |
+
pose_map = torch.zeros(point_num, self.fine_height, self.fine_width)
|
158 |
+
r = self.radius
|
159 |
+
im_pose = Image.new('L', (self.fine_width, self.fine_height))
|
160 |
+
pose_draw = ImageDraw.Draw(im_pose)
|
161 |
+
for i in range(point_num):
|
162 |
+
one_map = Image.new('L', (self.fine_width, self.fine_height))
|
163 |
+
draw = ImageDraw.Draw(one_map)
|
164 |
+
pointx = pose_data[i, 0]
|
165 |
+
pointy = pose_data[i, 1]
|
166 |
+
if pointx > 1 and pointy > 1:
|
167 |
+
draw.rectangle((pointx-r, pointy-r, pointx +
|
168 |
+
r, pointy+r), 'white', 'white')
|
169 |
+
pose_draw.rectangle(
|
170 |
+
(pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white')
|
171 |
+
one_map = self.transform(one_map)
|
172 |
+
pose_map[i] = one_map[0]
|
173 |
+
|
174 |
+
# just for visualization
|
175 |
+
im_pose = self.transform(im_pose)
|
176 |
+
|
177 |
+
# cloth-agnostic representation
|
178 |
+
agnostic = torch.cat([shape, im_h, pose_map], 0)
|
179 |
+
|
180 |
+
if self.stage == 'GMM':
|
181 |
+
im_g = Image.open('grid.png')
|
182 |
+
im_g = self.transform(im_g)
|
183 |
+
else:
|
184 |
+
im_g = ''
|
185 |
+
|
186 |
+
pcm.unsqueeze_(0) # CP-VTON+
|
187 |
+
|
188 |
+
result = {
|
189 |
+
'c_name': c_name, # for visualization
|
190 |
+
'im_name': im_name, # for visualization or ground truth
|
191 |
+
'cloth': c, # for input
|
192 |
+
'cloth_mask': cm, # for input
|
193 |
+
'image': im, # for visualization
|
194 |
+
'agnostic': agnostic, # for input
|
195 |
+
'parse_cloth': im_c, # for ground truth
|
196 |
+
'shape': shape, # for visualization
|
197 |
+
'head': im_h, # for visualization
|
198 |
+
'pose_image': im_pose, # for visualization
|
199 |
+
'grid_image': im_g, # for visualization
|
200 |
+
'parse_cloth_mask': pcm, # for CP-VTON+, TOM input
|
201 |
+
'shape_ori': shape_ori, # original body shape without resize
|
202 |
+
}
|
203 |
+
|
204 |
+
return result
|
205 |
+
|
206 |
+
def __len__(self):
|
207 |
+
return len(self.im_names)
|
208 |
+
|
209 |
+
|
210 |
+
class CPDataLoader(object):
|
211 |
+
def __init__(self, opt, dataset):
|
212 |
+
super(CPDataLoader, self).__init__()
|
213 |
+
|
214 |
+
if opt.shuffle:
|
215 |
+
train_sampler = torch.utils.data.sampler.RandomSampler(dataset)
|
216 |
+
else:
|
217 |
+
train_sampler = None
|
218 |
+
|
219 |
+
self.data_loader = torch.utils.data.DataLoader(
|
220 |
+
dataset, batch_size=opt.batch_size, shuffle=(
|
221 |
+
train_sampler is None),
|
222 |
+
num_workers=opt.workers, pin_memory=True, sampler=train_sampler)
|
223 |
+
self.dataset = dataset
|
224 |
+
self.data_iter = self.data_loader.__iter__()
|
225 |
+
|
226 |
+
def next_batch(self):
|
227 |
+
try:
|
228 |
+
batch = self.data_iter.__next__()
|
229 |
+
except StopIteration:
|
230 |
+
self.data_iter = self.data_loader.__iter__()
|
231 |
+
batch = self.data_iter.__next__()
|
232 |
+
|
233 |
+
return batch
|
234 |
+
|
235 |
+
|
236 |
+
if __name__ == "__main__":
|
237 |
+
print("Check the dataset for geometric matching module!")
|
238 |
+
|
239 |
+
import argparse
|
240 |
+
parser = argparse.ArgumentParser()
|
241 |
+
parser.add_argument("--dataroot", default="data")
|
242 |
+
parser.add_argument("--datamode", default="train")
|
243 |
+
parser.add_argument("--stage", default="GMM")
|
244 |
+
parser.add_argument("--data_list", default="train_pairs.txt")
|
245 |
+
parser.add_argument("--fine_width", type=int, default=192)
|
246 |
+
parser.add_argument("--fine_height", type=int, default=256)
|
247 |
+
parser.add_argument("--radius", type=int, default=3)
|
248 |
+
parser.add_argument("--shuffle", action='store_true',
|
249 |
+
help='shuffle input data')
|
250 |
+
parser.add_argument('-b', '--batch-size', type=int, default=4)
|
251 |
+
parser.add_argument('-j', '--workers', type=int, default=1)
|
252 |
+
|
253 |
+
opt = parser.parse_args()
|
254 |
+
dataset = CPDataset(opt)
|
255 |
+
data_loader = CPDataLoader(opt, dataset)
|
256 |
+
|
257 |
+
print('Size of the dataset: %05d, dataloader: %04d'
|
258 |
+
% (len(dataset), len(data_loader.data_loader)))
|
259 |
+
first_item = dataset.__getitem__(0)
|
260 |
+
first_batch = data_loader.next_batch()
|
261 |
+
|
262 |
+
from IPython import embed
|
263 |
+
embed()
|
grid.png
ADDED
![]() |