gaur3009 commited on
Commit
0e15ea7
·
verified ·
1 Parent(s): 03774b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -10
app.py CHANGED
@@ -8,10 +8,8 @@ from PIL import Image
8
  from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
9
  from huggingface_hub import hf_hub_download
10
 
11
- # Load the VAE
12
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
13
 
14
- # Download and load the model
15
  pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
16
  hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
17
  num_in_channels=8,
@@ -20,11 +18,9 @@ pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
20
  torch_dtype=torch.float16,
21
  )
22
 
23
- # Set the scheduler
24
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
25
  pipe_edit.to("cuda")
26
 
27
- # Load the refiner
28
  refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
29
  "stabilityai/stable-diffusion-xl-refiner-1.0",
30
  vae=vae,
@@ -34,7 +30,6 @@ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
34
  )
35
  refiner.to("cuda")
36
 
37
- # Patch for the scheduler
38
  def set_timesteps_patched(self, num_inference_steps: int, device=None):
39
  self.num_inference_steps = num_inference_steps
40
  ramp = np.linspace(0, 1, self.num_inference_steps)
@@ -48,7 +43,6 @@ def set_timesteps_patched(self, num_inference_steps: int, device=None):
48
 
49
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
50
 
51
- # Function to perform image editing
52
  def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
53
  input_image = Image.open(input_image).convert('RGB')
54
  if randomize_seed:
@@ -76,7 +70,6 @@ def king(input_image, instruction: str, negative_prompt: str = "", steps: int =
76
  ).images[0]
77
  return seed, refine
78
 
79
- # CSS for the Gradio interface
80
  css = '''
81
  .gradio-container{max-width: 700px !important}
82
  h1{text-align:center}
@@ -85,13 +78,11 @@ footer {
85
  }
86
  '''
87
 
88
- # Examples for the Gradio interface
89
  examples = [
90
  ["./supercar.png", "make it red"],
91
  ["./red_car.png", "add some snow"],
92
  ]
93
 
94
- # Creating the Gradio interface
95
  with gr.Blocks(css=css) as demo:
96
  gr.Markdown("# Image Editing\n### Note: First image generation takes time")
97
  with gr.Row():
@@ -130,4 +121,4 @@ with gr.Blocks(css=css) as demo:
130
  outputs=[seed, input_image],
131
  )
132
 
133
- demo.queue(max_size=500).launch()
 
8
  from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
9
  from huggingface_hub import hf_hub_download
10
 
 
11
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
12
 
 
13
  pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
14
  hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
15
  num_in_channels=8,
 
18
  torch_dtype=torch.float16,
19
  )
20
 
 
21
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
22
  pipe_edit.to("cuda")
23
 
 
24
  refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
25
  "stabilityai/stable-diffusion-xl-refiner-1.0",
26
  vae=vae,
 
30
  )
31
  refiner.to("cuda")
32
 
 
33
  def set_timesteps_patched(self, num_inference_steps: int, device=None):
34
  self.num_inference_steps = num_inference_steps
35
  ramp = np.linspace(0, 1, self.num_inference_steps)
 
43
 
44
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
45
 
 
46
  def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
47
  input_image = Image.open(input_image).convert('RGB')
48
  if randomize_seed:
 
70
  ).images[0]
71
  return seed, refine
72
 
 
73
  css = '''
74
  .gradio-container{max-width: 700px !important}
75
  h1{text-align:center}
 
78
  }
79
  '''
80
 
 
81
  examples = [
82
  ["./supercar.png", "make it red"],
83
  ["./red_car.png", "add some snow"],
84
  ]
85
 
 
86
  with gr.Blocks(css=css) as demo:
87
  gr.Markdown("# Image Editing\n### Note: First image generation takes time")
88
  with gr.Row():
 
121
  outputs=[seed, input_image],
122
  )
123
 
124
+ demo.queue(max_size=500).launch()