Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,8 @@ from PIL import Image
|
|
8 |
from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
-
# Load the VAE
|
12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
13 |
|
14 |
-
# Download and load the model
|
15 |
pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
|
16 |
hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
|
17 |
num_in_channels=8,
|
@@ -20,11 +18,9 @@ pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
|
|
20 |
torch_dtype=torch.float16,
|
21 |
)
|
22 |
|
23 |
-
# Set the scheduler
|
24 |
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
25 |
pipe_edit.to("cuda")
|
26 |
|
27 |
-
# Load the refiner
|
28 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
29 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
30 |
vae=vae,
|
@@ -34,7 +30,6 @@ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
|
34 |
)
|
35 |
refiner.to("cuda")
|
36 |
|
37 |
-
# Patch for the scheduler
|
38 |
def set_timesteps_patched(self, num_inference_steps: int, device=None):
|
39 |
self.num_inference_steps = num_inference_steps
|
40 |
ramp = np.linspace(0, 1, self.num_inference_steps)
|
@@ -48,7 +43,6 @@ def set_timesteps_patched(self, num_inference_steps: int, device=None):
|
|
48 |
|
49 |
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
50 |
|
51 |
-
# Function to perform image editing
|
52 |
def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
|
53 |
input_image = Image.open(input_image).convert('RGB')
|
54 |
if randomize_seed:
|
@@ -76,7 +70,6 @@ def king(input_image, instruction: str, negative_prompt: str = "", steps: int =
|
|
76 |
).images[0]
|
77 |
return seed, refine
|
78 |
|
79 |
-
# CSS for the Gradio interface
|
80 |
css = '''
|
81 |
.gradio-container{max-width: 700px !important}
|
82 |
h1{text-align:center}
|
@@ -85,13 +78,11 @@ footer {
|
|
85 |
}
|
86 |
'''
|
87 |
|
88 |
-
# Examples for the Gradio interface
|
89 |
examples = [
|
90 |
["./supercar.png", "make it red"],
|
91 |
["./red_car.png", "add some snow"],
|
92 |
]
|
93 |
|
94 |
-
# Creating the Gradio interface
|
95 |
with gr.Blocks(css=css) as demo:
|
96 |
gr.Markdown("# Image Editing\n### Note: First image generation takes time")
|
97 |
with gr.Row():
|
@@ -130,4 +121,4 @@ with gr.Blocks(css=css) as demo:
|
|
130 |
outputs=[seed, input_image],
|
131 |
)
|
132 |
|
133 |
-
demo.queue(max_size=500).launch()
|
|
|
8 |
from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
11 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
12 |
|
|
|
13 |
pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
|
14 |
hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
|
15 |
num_in_channels=8,
|
|
|
18 |
torch_dtype=torch.float16,
|
19 |
)
|
20 |
|
|
|
21 |
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
22 |
pipe_edit.to("cuda")
|
23 |
|
|
|
24 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
25 |
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
26 |
vae=vae,
|
|
|
30 |
)
|
31 |
refiner.to("cuda")
|
32 |
|
|
|
33 |
def set_timesteps_patched(self, num_inference_steps: int, device=None):
|
34 |
self.num_inference_steps = num_inference_steps
|
35 |
ramp = np.linspace(0, 1, self.num_inference_steps)
|
|
|
43 |
|
44 |
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
45 |
|
|
|
46 |
def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
|
47 |
input_image = Image.open(input_image).convert('RGB')
|
48 |
if randomize_seed:
|
|
|
70 |
).images[0]
|
71 |
return seed, refine
|
72 |
|
|
|
73 |
css = '''
|
74 |
.gradio-container{max-width: 700px !important}
|
75 |
h1{text-align:center}
|
|
|
78 |
}
|
79 |
'''
|
80 |
|
|
|
81 |
examples = [
|
82 |
["./supercar.png", "make it red"],
|
83 |
["./red_car.png", "add some snow"],
|
84 |
]
|
85 |
|
|
|
86 |
with gr.Blocks(css=css) as demo:
|
87 |
gr.Markdown("# Image Editing\n### Note: First image generation takes time")
|
88 |
with gr.Row():
|
|
|
121 |
outputs=[seed, input_image],
|
122 |
)
|
123 |
|
124 |
+
demo.queue(max_size=500).launch()
|