Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,13 @@ import gradio as gr
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
11 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
12 |
pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
|
13 |
hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
|
14 |
num_in_channels=8,
|
@@ -16,21 +19,28 @@ pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
|
|
16 |
vae=vae,
|
17 |
torch_dtype=torch.float16,
|
18 |
)
|
|
|
|
|
19 |
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
20 |
pipe_edit.to("cuda")
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
refiner.to("cuda")
|
24 |
|
|
|
25 |
def set_timesteps_patched(self, num_inference_steps: int, device=None):
|
26 |
self.num_inference_steps = num_inference_steps
|
27 |
-
|
28 |
ramp = np.linspace(0, 1, self.num_inference_steps)
|
29 |
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
30 |
-
|
31 |
-
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
32 |
self.timesteps = self.precondition_noise(sigmas)
|
33 |
-
|
34 |
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
35 |
self._step_index = None
|
36 |
self._begin_index = None
|
@@ -38,16 +48,8 @@ def set_timesteps_patched(self, num_inference_steps: int, device=None):
|
|
38 |
|
39 |
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
instruction: str,
|
44 |
-
negative_prompt: str = "",
|
45 |
-
steps: int = 25,
|
46 |
-
randomize_seed: bool = True,
|
47 |
-
seed: int = 2404,
|
48 |
-
guidance_scale: float = 6,
|
49 |
-
progress=gr.Progress(track_tqdm=True)
|
50 |
-
):
|
51 |
input_image = Image.open(input_image).convert('RGB')
|
52 |
if randomize_seed:
|
53 |
seed = random.randint(0, 999999)
|
@@ -74,6 +76,7 @@ def king(
|
|
74 |
).images[0]
|
75 |
return seed, refine
|
76 |
|
|
|
77 |
css = '''
|
78 |
.gradio-container{max-width: 700px !important}
|
79 |
h1{text-align:center}
|
@@ -82,17 +85,13 @@ footer {
|
|
82 |
}
|
83 |
'''
|
84 |
|
|
|
85 |
examples = [
|
86 |
-
[
|
87 |
-
|
88 |
-
"make it red",
|
89 |
-
],
|
90 |
-
[
|
91 |
-
"./red_car.png",
|
92 |
-
"add some snow",
|
93 |
-
],
|
94 |
]
|
95 |
|
|
|
96 |
with gr.Blocks(css=css) as demo:
|
97 |
gr.Markdown("# Image Editing\n### Note: First image generation takes time")
|
98 |
with gr.Row():
|
@@ -131,4 +130,4 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
outputs=[seed, input_image],
|
132 |
)
|
133 |
|
134 |
-
demo.queue(max_size=500).launch()
|
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
+
# Load the VAE
|
12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
13 |
+
|
14 |
+
# Download and load the model
|
15 |
pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
|
16 |
hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
|
17 |
num_in_channels=8,
|
|
|
19 |
vae=vae,
|
20 |
torch_dtype=torch.float16,
|
21 |
)
|
22 |
+
|
23 |
+
# Set the scheduler
|
24 |
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
25 |
pipe_edit.to("cuda")
|
26 |
|
27 |
+
# Load the refiner
|
28 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
29 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
30 |
+
vae=vae,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
use_safetensors=True,
|
33 |
+
variant="fp16"
|
34 |
+
)
|
35 |
refiner.to("cuda")
|
36 |
|
37 |
+
# Patch for the scheduler
|
38 |
def set_timesteps_patched(self, num_inference_steps: int, device=None):
|
39 |
self.num_inference_steps = num_inference_steps
|
|
|
40 |
ramp = np.linspace(0, 1, self.num_inference_steps)
|
41 |
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
42 |
+
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
|
|
43 |
self.timesteps = self.precondition_noise(sigmas)
|
|
|
44 |
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
45 |
self._step_index = None
|
46 |
self._begin_index = None
|
|
|
48 |
|
49 |
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
50 |
|
51 |
+
# Function to perform image editing
|
52 |
+
def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
input_image = Image.open(input_image).convert('RGB')
|
54 |
if randomize_seed:
|
55 |
seed = random.randint(0, 999999)
|
|
|
76 |
).images[0]
|
77 |
return seed, refine
|
78 |
|
79 |
+
# CSS for the Gradio interface
|
80 |
css = '''
|
81 |
.gradio-container{max-width: 700px !important}
|
82 |
h1{text-align:center}
|
|
|
85 |
}
|
86 |
'''
|
87 |
|
88 |
+
# Examples for the Gradio interface
|
89 |
examples = [
|
90 |
+
["./supercar.png", "make it red"],
|
91 |
+
["./red_car.png", "add some snow"],
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
]
|
93 |
|
94 |
+
# Creating the Gradio interface
|
95 |
with gr.Blocks(css=css) as demo:
|
96 |
gr.Markdown("# Image Editing\n### Note: First image generation takes time")
|
97 |
with gr.Row():
|
|
|
130 |
outputs=[seed, input_image],
|
131 |
)
|
132 |
|
133 |
+
demo.queue(max_size=500).launch()
|