Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
@@ -10,45 +10,44 @@ from transformers import (
|
|
10 |
CLIPTextModel,
|
11 |
CLIPTextModelWithProjection,
|
12 |
)
|
13 |
-
from diffusers import DDPMScheduler,AutoencoderKL
|
14 |
from typing import List
|
15 |
|
16 |
-
import torch
|
17 |
-
import os
|
18 |
-
from transformers import AutoTokenizer
|
19 |
import numpy as np
|
|
|
20 |
from utils_mask import get_mask_location
|
21 |
from torchvision import transforms
|
22 |
import apply_net
|
23 |
from preprocess.humanparsing.run_parsing import Parsing
|
24 |
from preprocess.openpose.run_openpose import OpenPose
|
25 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
26 |
from torchvision.transforms.functional import to_pil_image
|
27 |
|
28 |
-
|
29 |
def pil_to_binary_mask(pil_image, threshold=0):
|
30 |
np_image = np.array(pil_image)
|
31 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
32 |
binary_mask = np.array(grayscale_image) > threshold
|
33 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
34 |
-
for i in range(binary_mask.shape
|
35 |
-
for j in range(binary_mask.shape
|
36 |
-
if binary_mask[i,j] == True
|
37 |
-
mask[i,j] = 1
|
38 |
-
mask = (mask*255).astype(np.uint8)
|
39 |
output_mask = Image.fromarray(mask)
|
40 |
return output_mask
|
41 |
|
42 |
-
|
43 |
base_path = 'yisol/IDM-VTON'
|
44 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
45 |
|
|
|
46 |
unet = UNet2DConditionModel.from_pretrained(
|
47 |
base_path,
|
48 |
subfolder="unet",
|
49 |
torch_dtype=torch.float16,
|
50 |
)
|
51 |
unet.requires_grad_(False)
|
|
|
52 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
53 |
base_path,
|
54 |
subfolder="tokenizer",
|
@@ -61,6 +60,7 @@ tokenizer_two = AutoTokenizer.from_pretrained(
|
|
61 |
revision=None,
|
62 |
use_fast=False,
|
63 |
)
|
|
|
64 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
65 |
|
66 |
text_encoder_one = CLIPTextModel.from_pretrained(
|
@@ -77,13 +77,10 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
|
77 |
base_path,
|
78 |
subfolder="image_encoder",
|
79 |
torch_dtype=torch.float16,
|
80 |
-
)
|
81 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
82 |
-
subfolder="vae",
|
83 |
-
torch_dtype=torch.float16,
|
84 |
)
|
85 |
|
86 |
-
|
|
|
87 |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
88 |
base_path,
|
89 |
subfolder="unet_encoder",
|
@@ -99,39 +96,40 @@ vae.requires_grad_(False)
|
|
99 |
unet.requires_grad_(False)
|
100 |
text_encoder_one.requires_grad_(False)
|
101 |
text_encoder_two.requires_grad_(False)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
|
109 |
pipe = TryonPipeline.from_pretrained(
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
)
|
122 |
pipe.unet_encoder = UNet_Encoder
|
123 |
|
124 |
-
@
|
125 |
-
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
|
126 |
device = "cuda"
|
127 |
|
128 |
openpose_model.preprocessor.body_estimation.model.to(device)
|
129 |
pipe.to(device)
|
130 |
pipe.unet_encoder.to(device)
|
131 |
|
132 |
-
garm_img= garm_img.convert("RGB").resize((768,1024))
|
133 |
-
human_img_orig = dict["background"].convert("RGB")
|
134 |
-
|
135 |
if is_checked_crop:
|
136 |
width, height = human_img_orig.size
|
137 |
target_width = int(min(width, height * (3 / 4)))
|
@@ -142,121 +140,112 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
|
|
142 |
bottom = (height + target_height) / 2
|
143 |
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
144 |
crop_size = cropped_img.size
|
145 |
-
human_img = cropped_img.resize((768,1024))
|
146 |
else:
|
147 |
-
human_img = human_img_orig.resize((768,1024))
|
148 |
-
|
149 |
|
150 |
if is_checked:
|
151 |
-
keypoints = openpose_model(human_img.resize((384,512)))
|
152 |
-
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
153 |
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
154 |
-
mask = mask.resize((768,1024))
|
155 |
else:
|
156 |
-
mask = pil_to_binary_mask(dict['layers']
|
157 |
-
# mask = transforms.ToTensor()(mask)
|
158 |
-
# mask = mask.unsqueeze(0)
|
159 |
-
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
160 |
-
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
161 |
|
|
|
|
|
162 |
|
163 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
164 |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
165 |
-
|
166 |
-
|
167 |
|
168 |
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
169 |
-
|
170 |
-
pose_img =
|
171 |
-
pose_img = pose_img
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
with torch.
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
|
|
|
|
|
180 |
with torch.inference_mode():
|
181 |
(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
) = pipe.encode_prompt(
|
187 |
prompt,
|
188 |
num_images_per_prompt=1,
|
189 |
-
do_classifier_free_guidance=
|
190 |
negative_prompt=negative_prompt,
|
191 |
)
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
images = pipe(
|
218 |
-
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
219 |
-
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
220 |
-
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
221 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
|
222 |
-
num_inference_steps=denoise_steps,
|
223 |
-
generator=generator,
|
224 |
-
strength = 1.0,
|
225 |
-
pose_img = pose_img.to(device,torch.float16),
|
226 |
-
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
|
227 |
-
cloth = garm_tensor.to(device,torch.float16),
|
228 |
-
mask_image=mask,
|
229 |
-
image=human_img,
|
230 |
-
height=1024,
|
231 |
-
width=768,
|
232 |
-
ip_adapter_image = garm_img.resize((768,1024)),
|
233 |
-
guidance_scale=2.0,
|
234 |
-
)[0]
|
235 |
|
236 |
if is_checked_crop:
|
237 |
-
out_img = images
|
238 |
-
human_img_orig.paste(out_img, (int(left), int(top)))
|
239 |
return human_img_orig, mask_gray
|
240 |
else:
|
241 |
-
return images
|
242 |
-
# return images[0], mask_gray
|
243 |
|
244 |
-
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
245 |
-
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
246 |
|
247 |
-
human_list = os.listdir(os.path.join(example_path,"human"))
|
248 |
-
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
249 |
|
250 |
human_ex_list = []
|
251 |
for ex_human in human_list_path:
|
252 |
-
ex_dict= {}
|
253 |
ex_dict['background'] = ex_human
|
254 |
ex_dict['layers'] = None
|
255 |
ex_dict['composite'] = None
|
256 |
human_ex_list.append(ex_dict)
|
257 |
|
258 |
-
|
259 |
-
|
260 |
|
261 |
image_blocks = gr.Blocks().queue()
|
262 |
with image_blocks as demo:
|
@@ -266,9 +255,9 @@ with image_blocks as demo:
|
|
266 |
with gr.Column():
|
267 |
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
268 |
with gr.Row():
|
269 |
-
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
270 |
with gr.Row():
|
271 |
-
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
272 |
|
273 |
example = gr.Examples(
|
274 |
inputs=imgs,
|
@@ -287,13 +276,10 @@ with image_blocks as demo:
|
|
287 |
examples=garm_list_path)
|
288 |
with gr.Column():
|
289 |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
290 |
-
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
291 |
with gr.Column():
|
292 |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
293 |
-
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
|
298 |
with gr.Column():
|
299 |
try_button = gr.Button(value="Try-on")
|
@@ -302,12 +288,6 @@ with image_blocks as demo:
|
|
302 |
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
303 |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
304 |
|
|
|
305 |
|
306 |
-
|
307 |
-
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
image_blocks.launch()
|
313 |
-
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
|
|
10 |
CLIPTextModel,
|
11 |
CLIPTextModelWithProjection,
|
12 |
)
|
13 |
+
from diffusers import DDPMScheduler, AutoencoderKL
|
14 |
from typing import List
|
15 |
|
|
|
|
|
|
|
16 |
import numpy as np
|
17 |
+
import os
|
18 |
from utils_mask import get_mask_location
|
19 |
from torchvision import transforms
|
20 |
import apply_net
|
21 |
from preprocess.humanparsing.run_parsing import Parsing
|
22 |
from preprocess.openpose.run_openpose import OpenPose
|
23 |
+
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
|
24 |
from torchvision.transforms.functional import to_pil_image
|
25 |
|
26 |
+
# Function to convert PIL image to binary mask
|
27 |
def pil_to_binary_mask(pil_image, threshold=0):
|
28 |
np_image = np.array(pil_image)
|
29 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
30 |
binary_mask = np.array(grayscale_image) > threshold
|
31 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
32 |
+
for i in range(binary_mask.shape):
|
33 |
+
for j in range(binary_mask.shape):
|
34 |
+
if binary_mask[i, j] == True:
|
35 |
+
mask[i, j] = 1
|
36 |
+
mask = (mask * 255).astype(np.uint8)
|
37 |
output_mask = Image.fromarray(mask)
|
38 |
return output_mask
|
39 |
|
|
|
40 |
base_path = 'yisol/IDM-VTON'
|
41 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
42 |
|
43 |
+
# Load models with lower precision (float16) to reduce memory usage
|
44 |
unet = UNet2DConditionModel.from_pretrained(
|
45 |
base_path,
|
46 |
subfolder="unet",
|
47 |
torch_dtype=torch.float16,
|
48 |
)
|
49 |
unet.requires_grad_(False)
|
50 |
+
|
51 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
52 |
base_path,
|
53 |
subfolder="tokenizer",
|
|
|
60 |
revision=None,
|
61 |
use_fast=False,
|
62 |
)
|
63 |
+
|
64 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
65 |
|
66 |
text_encoder_one = CLIPTextModel.from_pretrained(
|
|
|
77 |
base_path,
|
78 |
subfolder="image_encoder",
|
79 |
torch_dtype=torch.float16,
|
|
|
|
|
|
|
|
|
80 |
)
|
81 |
|
82 |
+
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
|
83 |
+
|
84 |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
85 |
base_path,
|
86 |
subfolder="unet_encoder",
|
|
|
96 |
unet.requires_grad_(False)
|
97 |
text_encoder_one.requires_grad_(False)
|
98 |
text_encoder_two.requires_grad_(False)
|
99 |
+
|
100 |
+
tensor_transform = transforms.Compose(
|
101 |
+
[
|
102 |
+
transforms.ToTensor(),
|
103 |
+
transforms.Normalize([0.5], [0.5]),
|
104 |
+
]
|
105 |
+
)
|
106 |
|
107 |
pipe = TryonPipeline.from_pretrained(
|
108 |
+
base_path,
|
109 |
+
unet=unet,
|
110 |
+
vae=vae,
|
111 |
+
feature_extractor=CLIPImageProcessor(),
|
112 |
+
text_encoder=text_encoder_one,
|
113 |
+
text_encoder_2=text_encoder_two,
|
114 |
+
tokenizer=tokenizer_one,
|
115 |
+
tokenizer_2=tokenizer_two,
|
116 |
+
scheduler=noise_scheduler,
|
117 |
+
image_encoder=image_encoder,
|
118 |
+
torch_dtype=torch.float16,
|
119 |
)
|
120 |
pipe.unet_encoder = UNet_Encoder
|
121 |
|
122 |
+
@grSpaces.GPU
|
123 |
+
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
|
124 |
device = "cuda"
|
125 |
|
126 |
openpose_model.preprocessor.body_estimation.model.to(device)
|
127 |
pipe.to(device)
|
128 |
pipe.unet_encoder.to(device)
|
129 |
|
130 |
+
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
131 |
+
human_img_orig = dict["background"].convert("RGB")
|
132 |
+
|
133 |
if is_checked_crop:
|
134 |
width, height = human_img_orig.size
|
135 |
target_width = int(min(width, height * (3 / 4)))
|
|
|
140 |
bottom = (height + target_height) / 2
|
141 |
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
142 |
crop_size = cropped_img.size
|
143 |
+
human_img = cropped_img.resize((768, 1024))
|
144 |
else:
|
145 |
+
human_img = human_img_orig.resize((768, 1024))
|
|
|
146 |
|
147 |
if is_checked:
|
148 |
+
keypoints = openpose_model(human_img.resize((384, 512)))
|
149 |
+
model_parse, _ = parsing_model(human_img.resize((384, 512)))
|
150 |
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
151 |
+
mask = mask.resize((768, 1024))
|
152 |
else:
|
153 |
+
mask = pil_to_binary_mask(dict['layers'].convert("RGB").resize((768, 1024)))
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img)
|
156 |
+
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
|
157 |
|
158 |
+
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
|
159 |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
|
|
|
|
160 |
|
161 |
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
162 |
+
pose_img = args.func(args, human_img_arg)
|
163 |
+
pose_img = pose_img[:, :, ::-1]
|
164 |
+
pose_img = Image.fromarray(pose_img).resize((768, 1024))
|
165 |
+
|
166 |
+
with torch.cuda.amp.autocast():
|
167 |
+
with torch.no_grad():
|
168 |
+
prompt = "model is wearing " + garment_des
|
169 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
170 |
+
with torch.inference_mode():
|
171 |
+
(
|
172 |
+
prompt_embeds,
|
173 |
+
negative_prompt_embeds,
|
174 |
+
pooled_prompt_embeds,
|
175 |
+
negative_pooled_prompt_embeds,
|
176 |
+
) = pipe.encode_prompt(
|
177 |
+
prompt,
|
178 |
+
num_images_per_prompt=1,
|
179 |
+
do_classifier_free_guidance=True,
|
180 |
+
negative_prompt=negative_prompt,
|
181 |
+
)
|
182 |
+
|
183 |
+
prompt = "a photo of " + garment_des
|
184 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
185 |
+
if not isinstance(prompt, List):
|
186 |
+
prompt = [prompt] * 1
|
187 |
+
if not isinstance(negative_prompt, List):
|
188 |
+
negative_prompt = [negative_prompt] * 1
|
189 |
with torch.inference_mode():
|
190 |
(
|
191 |
+
prompt_embeds_c,
|
192 |
+
_,
|
193 |
+
_,
|
194 |
+
_,
|
195 |
) = pipe.encode_prompt(
|
196 |
prompt,
|
197 |
num_images_per_prompt=1,
|
198 |
+
do_classifier_free_guidance=False,
|
199 |
negative_prompt=negative_prompt,
|
200 |
)
|
201 |
+
|
202 |
+
pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16)
|
203 |
+
garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16)
|
204 |
+
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
205 |
+
images = pipe(
|
206 |
+
prompt_embeds=prompt_embeds.to(device, torch.float16),
|
207 |
+
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
|
208 |
+
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
|
209 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
|
210 |
+
num_inference_steps=denoise_steps,
|
211 |
+
generator=generator,
|
212 |
+
strength=1.0,
|
213 |
+
pose_img=pose_img.to(device, torch.float16),
|
214 |
+
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
|
215 |
+
cloth=garm_tensor.to(device, torch.float16),
|
216 |
+
mask_image=mask,
|
217 |
+
image=human_img,
|
218 |
+
height=1024,
|
219 |
+
width=768,
|
220 |
+
ip_adapter_image=garm_img.resize((768, 1024)),
|
221 |
+
guidance_scale=2.0,
|
222 |
+
)
|
223 |
+
|
224 |
+
# Clear GPU memory after inference
|
225 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
if is_checked_crop:
|
228 |
+
out_img = images.resize(crop_size)
|
229 |
+
human_img_orig.paste(out_img, (int(left), int(top)))
|
230 |
return human_img_orig, mask_gray
|
231 |
else:
|
232 |
+
return images, mask_gray
|
|
|
233 |
|
234 |
+
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
235 |
+
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
236 |
|
237 |
+
human_list = os.listdir(os.path.join(example_path, "human"))
|
238 |
+
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
|
239 |
|
240 |
human_ex_list = []
|
241 |
for ex_human in human_list_path:
|
242 |
+
ex_dict = {}
|
243 |
ex_dict['background'] = ex_human
|
244 |
ex_dict['layers'] = None
|
245 |
ex_dict['composite'] = None
|
246 |
human_ex_list.append(ex_dict)
|
247 |
|
248 |
+
# Default human
|
|
|
249 |
|
250 |
image_blocks = gr.Blocks().queue()
|
251 |
with image_blocks as demo:
|
|
|
255 |
with gr.Column():
|
256 |
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
257 |
with gr.Row():
|
258 |
+
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True)
|
259 |
with gr.Row():
|
260 |
+
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
|
261 |
|
262 |
example = gr.Examples(
|
263 |
inputs=imgs,
|
|
|
276 |
examples=garm_list_path)
|
277 |
with gr.Column():
|
278 |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
279 |
+
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
|
280 |
with gr.Column():
|
281 |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
282 |
+
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
|
|
|
|
|
|
283 |
|
284 |
with gr.Column():
|
285 |
try_button = gr.Button(value="Try-on")
|
|
|
288 |
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
289 |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
290 |
|
291 |
+
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed], outputs=[image_out, masked_img], api_name='tryon')
|
292 |
|
293 |
+
image_blocks.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|