Spaces:
gaur3009
/
Runtime error

gaur3009 commited on
Commit
2a52ad7
ยท
verified ยท
1 Parent(s): 02267af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +118 -138
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import spaces
2
  import gradio as gr
3
  from PIL import Image
4
  from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
@@ -10,45 +10,44 @@ from transformers import (
10
  CLIPTextModel,
11
  CLIPTextModelWithProjection,
12
  )
13
- from diffusers import DDPMScheduler,AutoencoderKL
14
  from typing import List
15
 
16
- import torch
17
- import os
18
- from transformers import AutoTokenizer
19
  import numpy as np
 
20
  from utils_mask import get_mask_location
21
  from torchvision import transforms
22
  import apply_net
23
  from preprocess.humanparsing.run_parsing import Parsing
24
  from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
 
28
-
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
  np_image = np.array(pil_image)
31
  grayscale_image = Image.fromarray(np_image).convert("L")
32
  binary_mask = np.array(grayscale_image) > threshold
33
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
- for i in range(binary_mask.shape[0]):
35
- for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
- mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
  output_mask = Image.fromarray(mask)
40
  return output_mask
41
 
42
-
43
  base_path = 'yisol/IDM-VTON'
44
  example_path = os.path.join(os.path.dirname(__file__), 'example')
45
 
 
46
  unet = UNet2DConditionModel.from_pretrained(
47
  base_path,
48
  subfolder="unet",
49
  torch_dtype=torch.float16,
50
  )
51
  unet.requires_grad_(False)
 
52
  tokenizer_one = AutoTokenizer.from_pretrained(
53
  base_path,
54
  subfolder="tokenizer",
@@ -61,6 +60,7 @@ tokenizer_two = AutoTokenizer.from_pretrained(
61
  revision=None,
62
  use_fast=False,
63
  )
 
64
  noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
 
66
  text_encoder_one = CLIPTextModel.from_pretrained(
@@ -77,13 +77,10 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
  base_path,
78
  subfolder="image_encoder",
79
  torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
84
  )
85
 
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
 
87
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
  base_path,
89
  subfolder="unet_encoder",
@@ -99,39 +96,40 @@ vae.requires_grad_(False)
99
  unet.requires_grad_(False)
100
  text_encoder_one.requires_grad_(False)
101
  text_encoder_two.requires_grad_(False)
102
- tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
 
108
 
109
  pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
- @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
126
  device = "cuda"
127
 
128
  openpose_model.preprocessor.body_estimation.model.to(device)
129
  pipe.to(device)
130
  pipe.unet_encoder.to(device)
131
 
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
134
-
135
  if is_checked_crop:
136
  width, height = human_img_orig.size
137
  target_width = int(min(width, height * (3 / 4)))
@@ -142,121 +140,112 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
142
  bottom = (height + target_height) / 2
143
  cropped_img = human_img_orig.crop((left, top, right, bottom))
144
  crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
  else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
 
150
  if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
  else:
156
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
 
 
 
162
 
163
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
 
168
  args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
- # verbosity = getattr(args, "verbosity", None)
170
- pose_img = args.func(args,human_img_arg)
171
- pose_img = pose_img[:,:,::-1]
172
- pose_img = Image.fromarray(pose_img).resize((768,1024))
173
-
174
- with torch.no_grad():
175
- # Extract the images
176
- with torch.cuda.amp.autocast():
177
- with torch.no_grad():
178
- prompt = "model is wearing " + garment_des
 
 
 
 
 
 
 
 
 
 
 
 
179
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
 
 
 
 
180
  with torch.inference_mode():
181
  (
182
- prompt_embeds,
183
- negative_prompt_embeds,
184
- pooled_prompt_embeds,
185
- negative_pooled_prompt_embeds,
186
  ) = pipe.encode_prompt(
187
  prompt,
188
  num_images_per_prompt=1,
189
- do_classifier_free_guidance=True,
190
  negative_prompt=negative_prompt,
191
  )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
- prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
235
 
236
  if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
  return human_img_orig, mask_gray
240
  else:
241
- return images[0], mask_gray
242
- # return images[0], mask_gray
243
 
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
 
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
 
250
  human_ex_list = []
251
  for ex_human in human_list_path:
252
- ex_dict= {}
253
  ex_dict['background'] = ex_human
254
  ex_dict['layers'] = None
255
  ex_dict['composite'] = None
256
  human_ex_list.append(ex_dict)
257
 
258
- ##default human
259
-
260
 
261
  image_blocks = gr.Blocks().queue()
262
  with image_blocks as demo:
@@ -266,9 +255,9 @@ with image_blocks as demo:
266
  with gr.Column():
267
  imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
  with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
  with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
 
273
  example = gr.Examples(
274
  inputs=imgs,
@@ -287,13 +276,10 @@ with image_blocks as demo:
287
  examples=garm_list_path)
288
  with gr.Column():
289
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
  with gr.Column():
292
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
-
297
 
298
  with gr.Column():
299
  try_button = gr.Button(value="Try-on")
@@ -302,12 +288,6 @@ with image_blocks as demo:
302
  denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
  seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
 
 
305
 
306
-
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
-
309
-
310
-
311
-
312
- image_blocks.launch()
313
-
 
1
+ import torch
2
  import gradio as gr
3
  from PIL import Image
4
  from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
 
10
  CLIPTextModel,
11
  CLIPTextModelWithProjection,
12
  )
13
+ from diffusers import DDPMScheduler, AutoencoderKL
14
  from typing import List
15
 
 
 
 
16
  import numpy as np
17
+ import os
18
  from utils_mask import get_mask_location
19
  from torchvision import transforms
20
  import apply_net
21
  from preprocess.humanparsing.run_parsing import Parsing
22
  from preprocess.openpose.run_openpose import OpenPose
23
+ from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
24
  from torchvision.transforms.functional import to_pil_image
25
 
26
+ # Function to convert PIL image to binary mask
27
  def pil_to_binary_mask(pil_image, threshold=0):
28
  np_image = np.array(pil_image)
29
  grayscale_image = Image.fromarray(np_image).convert("L")
30
  binary_mask = np.array(grayscale_image) > threshold
31
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
32
+ for i in range(binary_mask.shape):
33
+ for j in range(binary_mask.shape):
34
+ if binary_mask[i, j] == True:
35
+ mask[i, j] = 1
36
+ mask = (mask * 255).astype(np.uint8)
37
  output_mask = Image.fromarray(mask)
38
  return output_mask
39
 
 
40
  base_path = 'yisol/IDM-VTON'
41
  example_path = os.path.join(os.path.dirname(__file__), 'example')
42
 
43
+ # Load models with lower precision (float16) to reduce memory usage
44
  unet = UNet2DConditionModel.from_pretrained(
45
  base_path,
46
  subfolder="unet",
47
  torch_dtype=torch.float16,
48
  )
49
  unet.requires_grad_(False)
50
+
51
  tokenizer_one = AutoTokenizer.from_pretrained(
52
  base_path,
53
  subfolder="tokenizer",
 
60
  revision=None,
61
  use_fast=False,
62
  )
63
+
64
  noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
 
66
  text_encoder_one = CLIPTextModel.from_pretrained(
 
77
  base_path,
78
  subfolder="image_encoder",
79
  torch_dtype=torch.float16,
 
 
 
 
80
  )
81
 
82
+ vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
83
+
84
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
85
  base_path,
86
  subfolder="unet_encoder",
 
96
  unet.requires_grad_(False)
97
  text_encoder_one.requires_grad_(False)
98
  text_encoder_two.requires_grad_(False)
99
+
100
+ tensor_transform = transforms.Compose(
101
+ [
102
+ transforms.ToTensor(),
103
+ transforms.Normalize([0.5], [0.5]),
104
+ ]
105
+ )
106
 
107
  pipe = TryonPipeline.from_pretrained(
108
+ base_path,
109
+ unet=unet,
110
+ vae=vae,
111
+ feature_extractor=CLIPImageProcessor(),
112
+ text_encoder=text_encoder_one,
113
+ text_encoder_2=text_encoder_two,
114
+ tokenizer=tokenizer_one,
115
+ tokenizer_2=tokenizer_two,
116
+ scheduler=noise_scheduler,
117
+ image_encoder=image_encoder,
118
+ torch_dtype=torch.float16,
119
  )
120
  pipe.unet_encoder = UNet_Encoder
121
 
122
+ @grSpaces.GPU
123
+ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
124
  device = "cuda"
125
 
126
  openpose_model.preprocessor.body_estimation.model.to(device)
127
  pipe.to(device)
128
  pipe.unet_encoder.to(device)
129
 
130
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
131
+ human_img_orig = dict["background"].convert("RGB")
132
+
133
  if is_checked_crop:
134
  width, height = human_img_orig.size
135
  target_width = int(min(width, height * (3 / 4)))
 
140
  bottom = (height + target_height) / 2
141
  cropped_img = human_img_orig.crop((left, top, right, bottom))
142
  crop_size = cropped_img.size
143
+ human_img = cropped_img.resize((768, 1024))
144
  else:
145
+ human_img = human_img_orig.resize((768, 1024))
 
146
 
147
  if is_checked:
148
+ keypoints = openpose_model(human_img.resize((384, 512)))
149
+ model_parse, _ = parsing_model(human_img.resize((384, 512)))
150
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
151
+ mask = mask.resize((768, 1024))
152
  else:
153
+ mask = pil_to_binary_mask(dict['layers'].convert("RGB").resize((768, 1024)))
 
 
 
 
154
 
155
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img)
156
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
157
 
158
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
159
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
 
 
160
 
161
  args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
162
+ pose_img = args.func(args, human_img_arg)
163
+ pose_img = pose_img[:, :, ::-1]
164
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
165
+
166
+ with torch.cuda.amp.autocast():
167
+ with torch.no_grad():
168
+ prompt = "model is wearing " + garment_des
169
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
170
+ with torch.inference_mode():
171
+ (
172
+ prompt_embeds,
173
+ negative_prompt_embeds,
174
+ pooled_prompt_embeds,
175
+ negative_pooled_prompt_embeds,
176
+ ) = pipe.encode_prompt(
177
+ prompt,
178
+ num_images_per_prompt=1,
179
+ do_classifier_free_guidance=True,
180
+ negative_prompt=negative_prompt,
181
+ )
182
+
183
+ prompt = "a photo of " + garment_des
184
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
185
+ if not isinstance(prompt, List):
186
+ prompt = [prompt] * 1
187
+ if not isinstance(negative_prompt, List):
188
+ negative_prompt = [negative_prompt] * 1
189
  with torch.inference_mode():
190
  (
191
+ prompt_embeds_c,
192
+ _,
193
+ _,
194
+ _,
195
  ) = pipe.encode_prompt(
196
  prompt,
197
  num_images_per_prompt=1,
198
+ do_classifier_free_guidance=False,
199
  negative_prompt=negative_prompt,
200
  )
201
+
202
+ pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16)
203
+ garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16)
204
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
205
+ images = pipe(
206
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
207
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
208
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
209
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
210
+ num_inference_steps=denoise_steps,
211
+ generator=generator,
212
+ strength=1.0,
213
+ pose_img=pose_img.to(device, torch.float16),
214
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
215
+ cloth=garm_tensor.to(device, torch.float16),
216
+ mask_image=mask,
217
+ image=human_img,
218
+ height=1024,
219
+ width=768,
220
+ ip_adapter_image=garm_img.resize((768, 1024)),
221
+ guidance_scale=2.0,
222
+ )
223
+
224
+ # Clear GPU memory after inference
225
+ torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
 
227
  if is_checked_crop:
228
+ out_img = images.resize(crop_size)
229
+ human_img_orig.paste(out_img, (int(left), int(top)))
230
  return human_img_orig, mask_gray
231
  else:
232
+ return images, mask_gray
 
233
 
234
+ garm_list = os.listdir(os.path.join(example_path, "cloth"))
235
+ garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
236
 
237
+ human_list = os.listdir(os.path.join(example_path, "human"))
238
+ human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
239
 
240
  human_ex_list = []
241
  for ex_human in human_list_path:
242
+ ex_dict = {}
243
  ex_dict['background'] = ex_human
244
  ex_dict['layers'] = None
245
  ex_dict['composite'] = None
246
  human_ex_list.append(ex_dict)
247
 
248
+ # Default human
 
249
 
250
  image_blocks = gr.Blocks().queue()
251
  with image_blocks as demo:
 
255
  with gr.Column():
256
  imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
257
  with gr.Row():
258
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True)
259
  with gr.Row():
260
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
261
 
262
  example = gr.Examples(
263
  inputs=imgs,
 
276
  examples=garm_list_path)
277
  with gr.Column():
278
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
279
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
280
  with gr.Column():
281
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
282
+ image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
 
 
 
283
 
284
  with gr.Column():
285
  try_button = gr.Button(value="Try-on")
 
288
  denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
289
  seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
290
 
291
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed], outputs=[image_out, masked_img], api_name='tryon')
292
 
293
+ image_blocks.launch()