Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
-
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
from fpdf import FPDF
|
4 |
import librosa
|
|
|
5 |
|
6 |
-
def transcribe_and_generate_pdf(audio_file):
|
7 |
try:
|
8 |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
output_pdf = "transcription.pdf"
|
13 |
pdf = FPDF()
|
@@ -23,7 +34,7 @@ def transcribe_and_generate_pdf(audio_file):
|
|
23 |
|
24 |
interface = gr.Interface(
|
25 |
fn=transcribe_and_generate_pdf,
|
26 |
-
inputs=gr.Audio(type="filepath"),
|
27 |
outputs=[
|
28 |
gr.Textbox(label="Transcription"),
|
29 |
gr.File(label="Download PDF")
|
@@ -33,4 +44,4 @@ interface = gr.Interface(
|
|
33 |
)
|
34 |
|
35 |
if __name__ == "__main__":
|
36 |
-
interface.launch()
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
from fpdf import FPDF
|
3 |
import librosa
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
def transcribe_and_generate_pdf(audio_file, chunk_duration=30):
|
7 |
try:
|
8 |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
9 |
+
|
10 |
+
audio, sr = librosa.load(audio_file, sr=None)
|
11 |
+
|
12 |
+
num_chunks = int(len(audio) / (sr * chunk_duration)) + 1
|
13 |
+
|
14 |
+
transcription = ""
|
15 |
+
for i in range(num_chunks):
|
16 |
+
start = i * sr * chunk_duration
|
17 |
+
end = min((i + 1) * sr * chunk_duration, len(audio))
|
18 |
+
chunk = audio[start:end]
|
19 |
+
|
20 |
+
chunk_transcription = transcriber(chunk)["text"]
|
21 |
+
transcription += chunk_transcription + " "
|
22 |
|
23 |
output_pdf = "transcription.pdf"
|
24 |
pdf = FPDF()
|
|
|
34 |
|
35 |
interface = gr.Interface(
|
36 |
fn=transcribe_and_generate_pdf,
|
37 |
+
inputs=gr.Audio(type="filepath"),
|
38 |
outputs=[
|
39 |
gr.Textbox(label="Transcription"),
|
40 |
gr.File(label="Download PDF")
|
|
|
44 |
)
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
+
interface.launch()
|