Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,211 +1,132 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
|
5 |
-
import torch
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
from io import BytesIO
|
9 |
-
import time
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"negative_prompt": "(worst quality, low quality, etc.)",
|
22 |
-
"num_inference_steps": 30,
|
23 |
-
"scheduler": "DPMSolverMultistepScheduler"
|
24 |
-
},
|
25 |
-
}
|
26 |
-
|
27 |
-
while True:
|
28 |
-
response = requests.post(api_url, json=payload)
|
29 |
-
if response.status_code == 200:
|
30 |
-
return Image.open(BytesIO(response.content))
|
31 |
-
else:
|
32 |
-
raise Exception(f"API Error: {response.status_code}")
|
33 |
-
|
34 |
-
# Load the clothing customization model
|
35 |
-
if torch.cuda.is_available():
|
36 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
37 |
-
pipe.enable_xformers_memory_efficient_attention()
|
38 |
-
pipe = pipe.to(device)
|
39 |
-
else:
|
40 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
41 |
-
pipe = pipe.to(device)
|
42 |
|
43 |
-
|
44 |
-
MAX_IMAGE_SIZE = 1024
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
generator = torch.Generator().manual_seed(seed)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
negative_prompt=negative_prompt,
|
61 |
-
guidance_scale=guidance_scale,
|
62 |
-
num_inference_steps=num_inference_steps,
|
63 |
-
width=width,
|
64 |
-
height=height,
|
65 |
-
generator=generator
|
66 |
-
).images[0]
|
67 |
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
"red, t-shirt, cute panda",
|
72 |
-
"blue, hoodie, skull",
|
73 |
-
]
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
"""
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
power_device = "CPU"
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
gr.Markdown(f"""
|
91 |
-
# Text-to-Image Gradio Template
|
92 |
-
Currently running on {power_device}.
|
93 |
-
""")
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
|
97 |
-
prompt_part1 = gr.Textbox(
|
98 |
-
value="a single",
|
99 |
-
label="Prompt Part 1",
|
100 |
-
show_label=False,
|
101 |
-
interactive=False,
|
102 |
-
container=False,
|
103 |
-
elem_id="prompt_part1",
|
104 |
-
visible=False,
|
105 |
-
)
|
106 |
-
|
107 |
-
prompt_part2 = gr.Textbox(
|
108 |
-
label="color",
|
109 |
-
show_label=False,
|
110 |
-
max_lines=1,
|
111 |
-
placeholder="color (e.g., color category)",
|
112 |
-
container=False,
|
113 |
-
)
|
114 |
-
|
115 |
-
prompt_part3 = gr.Textbox(
|
116 |
-
label="dress_type",
|
117 |
-
show_label=False,
|
118 |
-
max_lines=1,
|
119 |
-
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
|
120 |
-
container=False,
|
121 |
-
)
|
122 |
-
|
123 |
-
prompt_part4 = gr.Textbox(
|
124 |
-
label="design",
|
125 |
-
show_label=False,
|
126 |
-
max_lines=1,
|
127 |
-
placeholder="design",
|
128 |
-
container=False,
|
129 |
-
)
|
130 |
-
|
131 |
-
prompt_part5 = gr.Textbox(
|
132 |
-
value="hanging on the plain wall",
|
133 |
-
label="Prompt Part 5",
|
134 |
-
show_label=False,
|
135 |
-
interactive=False,
|
136 |
-
container=False,
|
137 |
-
elem_id="prompt_part5",
|
138 |
-
visible=False,
|
139 |
-
)
|
140 |
-
|
141 |
-
run_button = gr.Button("Run", scale=0)
|
142 |
-
|
143 |
-
result = gr.Image(label="Result", show_label=False)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
maximum=12,
|
196 |
-
step=1,
|
197 |
-
value=2,
|
198 |
-
)
|
199 |
|
200 |
-
gr.Examples(
|
201 |
-
examples=examples,
|
202 |
-
inputs=[prompt_part2]
|
203 |
-
)
|
204 |
-
|
205 |
-
run_button.click(
|
206 |
-
fn=customize_clothing,
|
207 |
-
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
208 |
-
outputs=[result]
|
209 |
)
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler
|
3 |
+
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
import numpy as np
|
6 |
+
import math
|
7 |
+
#import spaces
|
8 |
+
import torch
|
9 |
from PIL import Image
|
10 |
+
import gc
|
|
|
|
|
11 |
|
12 |
+
if torch.backends.mps.is_available():
|
13 |
+
DEVICE = "mps"
|
14 |
+
torch.mps.empty_cache()
|
15 |
+
gc.collect()
|
16 |
+
elif torch.cuda.is_available():
|
17 |
+
DEVICE = "cuda"
|
18 |
+
torch.cuda.empty_cache()
|
19 |
+
gc.collect()
|
20 |
+
else:
|
21 |
+
DEVICE = "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
print(f"DEVICE={DEVICE}")
|
|
|
24 |
|
25 |
+
#edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
26 |
+
#normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
|
27 |
+
edit_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl_edit.safetensors")
|
28 |
+
normal_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl.safetensors")
|
29 |
|
30 |
+
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
31 |
+
self.num_inference_steps = num_inference_steps
|
32 |
|
33 |
+
ramp = np.linspace(0, 1, self.num_inference_steps)
|
34 |
+
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
|
|
|
|
35 |
|
36 |
+
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
37 |
+
self.timesteps = self.precondition_noise(sigmas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
40 |
+
self._step_index = None
|
41 |
+
self._begin_index = None
|
42 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
43 |
|
44 |
+
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
|
|
|
|
|
|
45 |
|
46 |
+
pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
47 |
+
edit_file, num_in_channels=8
|
48 |
+
)
|
49 |
+
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
50 |
+
pipe_edit.to(DEVICE)
|
|
|
51 |
|
52 |
+
pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
|
53 |
+
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
54 |
+
pipe_normal.to(DEVICE)
|
|
|
55 |
|
56 |
+
#@spaces.GPU
|
57 |
+
def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
|
58 |
+
return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
#@spaces.GPU
|
61 |
+
def run_edit(image, prompt, resolution, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
|
62 |
+
#resolution = 1024
|
63 |
+
print(f"width={image.width}, height={image.height}")
|
64 |
+
image.thumbnail((resolution, resolution), Image.Resampling.LANCZOS)
|
65 |
+
#image.resize((resolution, resolution))
|
66 |
+
#return pipe_edit(prompt=prompt,image=image,height=resolution,width=resolution,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
|
67 |
+
print(f"width={image.width}, height={image.height}")
|
68 |
+
img = pipe_edit(prompt=prompt,image=image,height=image.height,width=image.width,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
|
69 |
+
if DEVICE == "cuda":
|
70 |
+
torch.cuda.empty_cache()
|
71 |
+
gc.collect()
|
72 |
+
elif DEVICE == "mps":
|
73 |
+
torch.mps.empty_cache()
|
74 |
+
gc.collect()
|
75 |
+
return img
|
76 |
+
css = '''
|
77 |
+
.gradio-container{
|
78 |
+
max-width: 768px !important;
|
79 |
+
margin: 0 auto;
|
80 |
+
}
|
81 |
+
'''
|
82 |
+
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"]
|
83 |
+
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]]
|
84 |
+
with gr.Blocks(css=css) as demo:
|
85 |
+
gr.Markdown('''# CosXL demo
|
86 |
+
Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE)
|
87 |
+
''')
|
88 |
+
with gr.Tab("CosXL Edit"):
|
89 |
+
with gr.Group():
|
90 |
+
image_edit = gr.Image(label="Image you would like to edit", type="pil")
|
91 |
+
prompt_edit = gr.Textbox(label="Prompt", scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
|
92 |
+
size_edit = gr.Number(label="Size", value=1024, maximum=1024, minimum=512, precision=0)
|
93 |
+
button_edit = gr.Button("Generate", min_width=120)
|
94 |
+
output_edit = gr.Image(label="Your result image", interactive=False)
|
95 |
+
with gr.Accordion("Advanced Settings", open=False):
|
96 |
+
negative_prompt_edit = gr.Textbox(label="Negative Prompt")
|
97 |
+
guidance_scale_edit = gr.Number(label="Guidance Scale", value=7)
|
98 |
+
gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit, size_edit], outputs=[output_edit], cache_examples=False)
|
99 |
+
with gr.Tab("CosXL"):
|
100 |
+
with gr.Group():
|
101 |
+
with gr.Row():
|
102 |
+
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
|
103 |
+
button_normal = gr.Button("Generate", min_width=120)
|
104 |
+
output_normal = gr.Image(label="Your result image", interactive=False)
|
105 |
+
with gr.Accordion("Advanced Settings", open=False):
|
106 |
+
negative_prompt_normal = gr.Textbox(label="Negative Prompt")
|
107 |
+
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
|
108 |
+
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=False)
|
109 |
+
button_edit.click(
|
|
|
|
|
|
|
|
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
)
|
112 |
+
gr.on(
|
113 |
+
triggers=[
|
114 |
+
button_normal.click,
|
115 |
+
prompt_normal.submit
|
116 |
+
],
|
117 |
+
fn=run_normal,
|
118 |
+
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
|
119 |
+
outputs=[output_normal],
|
120 |
+
)
|
121 |
+
gr.on(
|
122 |
+
triggers=[
|
123 |
+
button_edit.click,
|
124 |
+
prompt_edit.submit
|
125 |
+
],
|
126 |
+
fn=run_edit,
|
127 |
+
inputs=[image_edit, prompt_edit, size_edit, negative_prompt_edit, guidance_scale_edit],
|
128 |
+
outputs=[output_edit]
|
129 |
+
)
|
130 |
+
if __name__ == "__main__":
|
131 |
+
#demo.launch(share=True)
|
132 |
+
demo.launch()
|