gaur3009 commited on
Commit
b5839d1
·
verified ·
1 Parent(s): c8443ca

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +211 -0
app.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ from diffusers import DiffusionPipeline
5
+ import torch
6
+ from PIL import Image
7
+ import requests
8
+ from io import BytesIO
9
+ import time
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+
13
+ # Load the design generation model
14
+ repo = "artificialguybr/TshirtDesignRedmond-V2"
15
+
16
+ def generate_image(prompt):
17
+ api_url = f"https://api-inference.huggingface.co/models/{repo}"
18
+ payload = {
19
+ "inputs": prompt,
20
+ "parameters": {
21
+ "negative_prompt": "(worst quality, low quality, etc.)",
22
+ "num_inference_steps": 30,
23
+ "scheduler": "DPMSolverMultistepScheduler"
24
+ },
25
+ }
26
+
27
+ while True:
28
+ response = requests.post(api_url, json=payload)
29
+ if response.status_code == 200:
30
+ return Image.open(BytesIO(response.content))
31
+ else:
32
+ raise Exception(f"API Error: {response.status_code}")
33
+
34
+ # Load the clothing customization model
35
+ if torch.cuda.is_available():
36
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
37
+ pipe.enable_xformers_memory_efficient_attention()
38
+ pipe = pipe.to(device)
39
+ else:
40
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
41
+ pipe = pipe.to(device)
42
+
43
+ MAX_SEED = np.iinfo(np.int32).max
44
+ MAX_IMAGE_SIZE = 1024
45
+
46
+ def customize_clothing(prompt_part1, color, dress_type, design_prompt, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
47
+ # Generate the design first
48
+ design_image = generate_image(design_prompt)
49
+
50
+ # Now customize the clothing with the generated design
51
+ prompt = f"{prompt_part1} {color} colored plain {dress_type} with custom design, {prompt_part5}"
52
+
53
+ if randomize_seed:
54
+ seed = random.randint(0, MAX_SEED)
55
+
56
+ generator = torch.Generator().manual_seed(seed)
57
+
58
+ image = pipe(
59
+ prompt=prompt,
60
+ negative_prompt=negative_prompt,
61
+ guidance_scale=guidance_scale,
62
+ num_inference_steps=num_inference_steps,
63
+ width=width,
64
+ height=height,
65
+ generator=generator
66
+ ).images[0]
67
+
68
+ return image
69
+
70
+ examples = [
71
+ "red, t-shirt, cute panda",
72
+ "blue, hoodie, skull",
73
+ ]
74
+
75
+ css = """
76
+ #col-container {
77
+ margin: 0 auto;
78
+ max-width: 520px;
79
+ }
80
+ """
81
+
82
+ if torch.cuda.is_available():
83
+ power_device = "GPU"
84
+ else:
85
+ power_device = "CPU"
86
+
87
+ with gr.Blocks(css=css) as demo:
88
+
89
+ with gr.Column(elem_id="col-container"):
90
+ gr.Markdown(f"""
91
+ # Text-to-Image Gradio Template
92
+ Currently running on {power_device}.
93
+ """)
94
+
95
+ with gr.Row():
96
+
97
+ prompt_part1 = gr.Textbox(
98
+ value="a single",
99
+ label="Prompt Part 1",
100
+ show_label=False,
101
+ interactive=False,
102
+ container=False,
103
+ elem_id="prompt_part1",
104
+ visible=False,
105
+ )
106
+
107
+ prompt_part2 = gr.Textbox(
108
+ label="color",
109
+ show_label=False,
110
+ max_lines=1,
111
+ placeholder="color (e.g., color category)",
112
+ container=False,
113
+ )
114
+
115
+ prompt_part3 = gr.Textbox(
116
+ label="dress_type",
117
+ show_label=False,
118
+ max_lines=1,
119
+ placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
120
+ container=False,
121
+ )
122
+
123
+ prompt_part4 = gr.Textbox(
124
+ label="design",
125
+ show_label=False,
126
+ max_lines=1,
127
+ placeholder="design",
128
+ container=False,
129
+ )
130
+
131
+ prompt_part5 = gr.Textbox(
132
+ value="hanging on the plain wall",
133
+ label="Prompt Part 5",
134
+ show_label=False,
135
+ interactive=False,
136
+ container=False,
137
+ elem_id="prompt_part5",
138
+ visible=False,
139
+ )
140
+
141
+ run_button = gr.Button("Run", scale=0)
142
+
143
+ result = gr.Image(label="Result", show_label=False)
144
+
145
+ with gr.Accordion("Advanced Settings", open=False):
146
+
147
+ negative_prompt = gr.Textbox(
148
+ label="Negative prompt",
149
+ max_lines=1,
150
+ placeholder="Enter a negative prompt",
151
+ visible=False,
152
+ )
153
+
154
+ seed = gr.Slider(
155
+ label="Seed",
156
+ minimum=0,
157
+ maximum=MAX_SEED,
158
+ step=1,
159
+ value=0,
160
+ )
161
+
162
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
163
+
164
+ with gr.Row():
165
+
166
+ width = gr.Slider(
167
+ label="Width",
168
+ minimum=256,
169
+ maximum=MAX_IMAGE_SIZE,
170
+ step=32,
171
+ value=512,
172
+ )
173
+
174
+ height = gr.Slider(
175
+ label="Height",
176
+ minimum=256,
177
+ maximum=MAX_IMAGE_SIZE,
178
+ step=32,
179
+ value=512,
180
+ )
181
+
182
+ with gr.Row():
183
+
184
+ guidance_scale = gr.Slider(
185
+ label="Guidance scale",
186
+ minimum=0.0,
187
+ maximum=10.0,
188
+ step=0.1,
189
+ value=0.0,
190
+ )
191
+
192
+ num_inference_steps = gr.Slider(
193
+ label="Number of inference steps",
194
+ minimum=1,
195
+ maximum=12,
196
+ step=1,
197
+ value=2,
198
+ )
199
+
200
+ gr.Examples(
201
+ examples=examples,
202
+ inputs=[prompt_part2]
203
+ )
204
+
205
+ run_button.click(
206
+ fn=customize_clothing,
207
+ inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
208
+ outputs=[result]
209
+ )
210
+
211
+ demo.queue().launch()