Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image, ImageOps | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}" | |
back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
front_image = pipe( | |
prompt=front_prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
back_image = pipe( | |
prompt=back_prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return front_image, back_image | |
examples = [ | |
["red", "t-shirt", "yellow stripes", "polka dots"], | |
["blue", "hoodie", "minimalist", "abstract art"], | |
["red", "sweat shirt", "geometric design", "plain"], | |
] | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
def edit_image(img_data, operation, *args): | |
image = Image.open(img_data) | |
if operation == "rotate": | |
angle = int(args[0]) | |
image = image.rotate(angle, expand=True) | |
elif operation == "crop": | |
left, top, right, bottom = map(int, args) | |
image = image.crop((left, top, right, bottom)) | |
elif operation == "resize": | |
width, height = map(int, args) | |
image = image.resize((width, height)) | |
elif operation == "flip": | |
if args[0] == "horizontal": | |
image = ImageOps.mirror(image) | |
else: | |
image = ImageOps.flip(image) | |
return image | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown(f""" | |
# GenZ Couture | |
Currently running on {power_device}. | |
""") | |
prompt_part1 = gr.Textbox(value="a single", label="Prompt Part 1") | |
prompt_part2 = gr.Textbox(label="color", placeholder="color (e.g., red, blue)") | |
prompt_part3 = gr.Textbox(label="dress_type", placeholder="dress_type (e.g., t-shirt, hoodie)") | |
prompt_part4_front = gr.Textbox(label="front design", placeholder="front design") | |
prompt_part4_back = gr.Textbox(label="back design", placeholder="back design") | |
prompt_part5 = gr.Textbox(value="hanging on the plain wall", label="Prompt Part 5") | |
run_button = gr.Button("Generate Designs") | |
front_result = gr.Image(label="Front View Result", type="pil", interactive=True) | |
back_result = gr.Image(label="Back View Result", type="pil", interactive=True) | |
gr.Examples(examples=examples, inputs=[prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back]) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back, prompt_part5], | |
outputs=[front_result, back_result] | |
) | |
gr.Markdown("## Creative Touch") | |
edit_operation = gr.Dropdown(choices=["rotate", "crop", "resize", "flip"], label="Edit Operation") | |
edit_args = gr.Textbox(label="Edit Arguments (comma-separated)", placeholder="For rotate: angle, For crop: left,top,right,bottom, For resize: width,height, For flip: horizontal/vertical") | |
edit_button = gr.Button("Edit Front Design") | |
edit_button.click( | |
fn=lambda img_data, operation, args: edit_image(img_data, operation, *args.split(',')), | |
inputs=[front_result, edit_operation, edit_args], | |
outputs=[front_result] | |
) | |
demo.queue().launch() | |