Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
-
import torch
|
6 |
from PIL import Image, ImageOps, ImageEnhance
|
7 |
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
10 |
-
if torch.cuda.is_available():
|
11 |
-
torch.cuda.max_memory_allocated(device=device)
|
12 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
13 |
-
pipe.enable_xformers_memory_efficient_attention()
|
14 |
-
pipe = pipe.to(device)
|
15 |
-
else:
|
16 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
17 |
-
pipe = pipe.to(device)
|
18 |
-
|
19 |
-
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
MAX_IMAGE_SIZE = 1024
|
21 |
-
|
22 |
-
def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_part5, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
23 |
-
front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}"
|
24 |
-
back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}"
|
25 |
-
|
26 |
-
if randomize_seed:
|
27 |
-
seed = random.randint(0, MAX_SEED)
|
28 |
-
|
29 |
-
generator = torch.Generator().manual_seed(seed)
|
30 |
-
|
31 |
-
front_image = pipe(
|
32 |
-
prompt=front_prompt,
|
33 |
-
guidance_scale=guidance_scale,
|
34 |
-
num_inference_steps=num_inference_steps,
|
35 |
-
width=width,
|
36 |
-
height=height,
|
37 |
-
generator=generator
|
38 |
-
).images[0]
|
39 |
-
|
40 |
-
back_image = pipe(
|
41 |
-
prompt=back_prompt,
|
42 |
-
guidance_scale=guidance_scale,
|
43 |
-
num_inference_steps=num_inference_steps,
|
44 |
-
width=width,
|
45 |
-
height=height,
|
46 |
-
generator=generator
|
47 |
-
).images[0]
|
48 |
-
|
49 |
-
return front_image, back_image
|
50 |
-
|
51 |
def edit_image(img_data, operation, *args):
|
52 |
image = Image.open(img_data)
|
53 |
|
@@ -72,63 +25,27 @@ def edit_image(img_data, operation, *args):
|
|
72 |
return image
|
73 |
|
74 |
examples = [
|
75 |
-
["
|
76 |
-
["
|
77 |
-
["
|
78 |
]
|
79 |
|
80 |
-
if torch.cuda.is_available():
|
81 |
-
power_device = "GPU"
|
82 |
-
else:
|
83 |
-
power_device = "CPU"
|
84 |
-
|
85 |
with gr.Blocks() as demo:
|
86 |
with gr.Row():
|
87 |
-
gr.Markdown(
|
88 |
-
# GenZ Couture
|
89 |
-
Currently running on {power_device}.
|
90 |
-
""")
|
91 |
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
-
|
95 |
-
|
96 |
-
prompt_part3 = gr.Textbox(label="Dress Type", placeholder="Dress Type (e.g., t-shirt, hoodie)")
|
97 |
-
prompt_part4_front = gr.Textbox(label="Front Design", placeholder="Front Design")
|
98 |
-
prompt_part4_back = gr.Textbox(label="Back Design", placeholder="Back Design")
|
99 |
-
prompt_part5 = gr.Textbox(value="hanging on the plain wall", label="Prompt Part 5")
|
100 |
-
seed = gr.Slider(0, MAX_SEED, step=1, label="Seed", value=42)
|
101 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
102 |
-
width = gr.Slider(256, MAX_IMAGE_SIZE, step=32, label="Width", value=512)
|
103 |
-
height = gr.Slider(256, MAX_IMAGE_SIZE, step=32, label="Height", value=512)
|
104 |
-
guidance_scale = gr.Slider(1, 20, step=0.5, label="Guidance Scale", value=7.5)
|
105 |
-
num_inference_steps = gr.Slider(10, 100, step=1, label="Number of Inference Steps", value=50)
|
106 |
-
|
107 |
-
run_button = gr.Button("Generate Designs")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
front_result = gr.Image(label="Front View Result", type="pil", interactive=True)
|
111 |
-
back_result = gr.Image(label="Back View Result", type="pil", interactive=True)
|
112 |
-
|
113 |
-
run_button.click(
|
114 |
-
fn=infer,
|
115 |
-
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back, prompt_part5, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
116 |
-
outputs=[front_result, back_result]
|
117 |
-
)
|
118 |
-
|
119 |
-
gr.Markdown("## Creative Touch")
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
edit_operation = gr.Dropdown(choices=["rotate", "crop", "resize", "flip", "color"], label="Edit Operation")
|
123 |
-
edit_args = gr.Textbox(label="Edit Arguments (comma-separated)", placeholder="For rotate: angle, For crop: left,top,right,bottom, For resize: width,height, For flip: horizontal/vertical, For color: factor")
|
124 |
|
125 |
-
|
126 |
-
|
127 |
|
128 |
edit_button.click(
|
129 |
fn=lambda img_data, operation, args: edit_image(img_data, operation, *args.split(',')),
|
130 |
-
inputs=[
|
131 |
outputs=[edited_image]
|
132 |
)
|
133 |
|
134 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image, ImageOps, ImageEnhance
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def edit_image(img_data, operation, *args):
|
5 |
image = Image.open(img_data)
|
6 |
|
|
|
25 |
return image
|
26 |
|
27 |
examples = [
|
28 |
+
["rotate", "90", "crop", "100,100,400,400"],
|
29 |
+
["resize", "400,400", "flip", "horizontal"],
|
30 |
+
["color", "1.5"]
|
31 |
]
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
with gr.Blocks() as demo:
|
34 |
with gr.Row():
|
35 |
+
gr.Markdown("# Image Editor")
|
|
|
|
|
|
|
36 |
|
37 |
with gr.Row():
|
38 |
with gr.Column():
|
39 |
+
edit_operation = gr.Dropdown(choices=["rotate", "crop", "resize", "flip", "color"], label="Edit Operation")
|
40 |
+
edit_args = gr.Textbox(label="Edit Arguments (comma-separated)", placeholder="For rotate: angle, For crop: left,top,right,bottom, For resize: width,height, For flip: horizontal/vertical, For color: factor")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
edit_button = gr.Button("Edit Image")
|
43 |
+
edited_image = gr.Image(label="Edited Image", type="pil", interactive=True)
|
44 |
|
45 |
edit_button.click(
|
46 |
fn=lambda img_data, operation, args: edit_image(img_data, operation, *args.split(',')),
|
47 |
+
inputs=[edited_image, edit_operation, edit_args],
|
48 |
outputs=[edited_image]
|
49 |
)
|
50 |
|
51 |
+
demo.queue().launch()
|