Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,20 @@ import numpy as np
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
@@ -22,26 +25,28 @@ def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_par
|
|
22 |
if randomize_seed:
|
23 |
seed = random.randint(0, MAX_SEED)
|
24 |
|
25 |
-
generator = torch.Generator().manual_seed(seed)
|
26 |
|
|
|
27 |
front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}"
|
28 |
front_image = pipe(
|
29 |
-
prompt=front_prompt,
|
30 |
negative_prompt=negative_prompt,
|
31 |
-
guidance_scale=guidance_scale,
|
32 |
-
num_inference_steps=num_inference_steps,
|
33 |
-
width=width,
|
34 |
height=height,
|
35 |
generator=generator
|
36 |
).images[0]
|
37 |
|
|
|
38 |
back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}"
|
39 |
back_image = pipe(
|
40 |
-
prompt=back_prompt,
|
41 |
negative_prompt=negative_prompt,
|
42 |
-
guidance_scale=guidance_scale,
|
43 |
-
num_inference_steps=num_inference_steps,
|
44 |
-
width=width,
|
45 |
height=height,
|
46 |
generator=generator
|
47 |
).images[0]
|
@@ -61,17 +66,12 @@ css = """
|
|
61 |
}
|
62 |
"""
|
63 |
|
64 |
-
if torch.cuda.is_available():
|
65 |
-
power_device = "GPU"
|
66 |
-
else:
|
67 |
-
power_device = "CPU"
|
68 |
-
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
|
71 |
with gr.Column(elem_id="col-container"):
|
72 |
gr.Markdown(f"""
|
73 |
# Text-to-Image Gradio Template
|
74 |
-
Currently running on
|
75 |
""")
|
76 |
|
77 |
with gr.Row():
|
@@ -179,15 +179,15 @@ with gr.Blocks(css=css) as demo:
|
|
179 |
minimum=0.0,
|
180 |
maximum=10.0,
|
181 |
step=0.1,
|
182 |
-
value=
|
183 |
)
|
184 |
|
185 |
num_inference_steps = gr.Slider(
|
186 |
label="Number of inference steps",
|
187 |
minimum=1,
|
188 |
-
maximum=12,
|
189 |
step=1,
|
190 |
-
value=
|
191 |
)
|
192 |
|
193 |
gr.Examples(
|
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
+
from optimum.intel import ipex
|
7 |
|
8 |
+
# Use Intel Extension for PyTorch for CPU optimization
|
9 |
+
device = "cpu"
|
10 |
|
11 |
+
# Load the pipeline with optimizations for CPU inference
|
12 |
+
pipe = DiffusionPipeline.from_pretrained(
|
13 |
+
"stabilityai/sdxl-turbo",
|
14 |
+
use_safetensors=True
|
15 |
+
)
|
16 |
+
pipe = pipe.to(device)
|
17 |
+
|
18 |
+
# Optimize the pipeline using Intel Extension for PyTorch
|
19 |
+
ipex.optimize(pipe.unet, dtype=torch.float32) # Optimized for Intel CPUs
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1024
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
|
28 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
29 |
|
30 |
+
# Front view prompt generation and inference
|
31 |
front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}"
|
32 |
front_image = pipe(
|
33 |
+
prompt=front_prompt,
|
34 |
negative_prompt=negative_prompt,
|
35 |
+
guidance_scale=guidance_scale,
|
36 |
+
num_inference_steps=num_inference_steps,
|
37 |
+
width=width,
|
38 |
height=height,
|
39 |
generator=generator
|
40 |
).images[0]
|
41 |
|
42 |
+
# Back view prompt generation and inference
|
43 |
back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}"
|
44 |
back_image = pipe(
|
45 |
+
prompt=back_prompt,
|
46 |
negative_prompt=negative_prompt,
|
47 |
+
guidance_scale=guidance_scale,
|
48 |
+
num_inference_steps=num_inference_steps,
|
49 |
+
width=width,
|
50 |
height=height,
|
51 |
generator=generator
|
52 |
).images[0]
|
|
|
66 |
}
|
67 |
"""
|
68 |
|
|
|
|
|
|
|
|
|
|
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
|
71 |
with gr.Column(elem_id="col-container"):
|
72 |
gr.Markdown(f"""
|
73 |
# Text-to-Image Gradio Template
|
74 |
+
Currently running on CPU (Optimized).
|
75 |
""")
|
76 |
|
77 |
with gr.Row():
|
|
|
179 |
minimum=0.0,
|
180 |
maximum=10.0,
|
181 |
step=0.1,
|
182 |
+
value=7.5, # Default value optimized for accuracy and speed
|
183 |
)
|
184 |
|
185 |
num_inference_steps = gr.Slider(
|
186 |
label="Number of inference steps",
|
187 |
minimum=1,
|
188 |
+
maximum=12, # Reduced steps for faster execution
|
189 |
step=1,
|
190 |
+
value=8, # Balanced between speed and quality
|
191 |
)
|
192 |
|
193 |
gr.Examples(
|