Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,16 +18,13 @@ else:
|
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
def infer(color, dress_type, front_design, back_design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
if randomize_seed:
|
23 |
seed = random.randint(0, MAX_SEED)
|
24 |
|
25 |
generator = torch.Generator().manual_seed(seed)
|
26 |
|
27 |
-
|
28 |
-
front_prompt = f"front view of {prompt_base} with {front_design} design"
|
29 |
-
back_prompt = f"back view of {prompt_base} with {back_design} design"
|
30 |
-
|
31 |
front_image = pipe(
|
32 |
prompt=front_prompt,
|
33 |
negative_prompt=negative_prompt,
|
@@ -38,6 +35,7 @@ def infer(color, dress_type, front_design, back_design, negative_prompt, seed, r
|
|
38 |
generator=generator
|
39 |
).images[0]
|
40 |
|
|
|
41 |
back_image = pipe(
|
42 |
prompt=back_prompt,
|
43 |
negative_prompt=negative_prompt,
|
@@ -78,42 +76,63 @@ with gr.Blocks(css=css) as demo:
|
|
78 |
|
79 |
with gr.Row():
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
max_lines=1,
|
85 |
-
placeholder="
|
86 |
container=False,
|
87 |
)
|
88 |
|
89 |
-
|
90 |
-
label="
|
91 |
-
show_label=
|
92 |
max_lines=1,
|
93 |
-
placeholder="
|
94 |
container=False,
|
95 |
)
|
96 |
|
97 |
-
|
98 |
-
label="
|
99 |
-
show_label=
|
100 |
max_lines=1,
|
101 |
-
placeholder="
|
102 |
container=False,
|
103 |
)
|
104 |
|
105 |
-
|
106 |
-
label="
|
107 |
-
show_label=
|
108 |
max_lines=1,
|
109 |
-
placeholder="
|
110 |
container=False,
|
111 |
)
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
run_button = gr.Button("Run", scale=0)
|
114 |
|
115 |
-
front_result = gr.Image(label="Front View Result", show_label=
|
116 |
-
back_result = gr.Image(label="Back View Result", show_label=
|
117 |
|
118 |
with gr.Accordion("Advanced Settings", open=False):
|
119 |
|
@@ -121,7 +140,7 @@ with gr.Blocks(css=css) as demo:
|
|
121 |
label="Negative prompt",
|
122 |
max_lines=1,
|
123 |
placeholder="Enter a negative prompt",
|
124 |
-
visible=
|
125 |
)
|
126 |
|
127 |
seed = gr.Slider(
|
@@ -165,20 +184,20 @@ with gr.Blocks(css=css) as demo:
|
|
165 |
num_inference_steps = gr.Slider(
|
166 |
label="Number of inference steps",
|
167 |
minimum=1,
|
168 |
-
maximum=
|
169 |
step=1,
|
170 |
-
value=
|
171 |
)
|
172 |
|
173 |
gr.Examples(
|
174 |
examples=examples,
|
175 |
-
inputs=[
|
176 |
)
|
177 |
|
178 |
run_button.click(
|
179 |
fn=infer,
|
180 |
-
inputs=[
|
181 |
outputs=[front_result, back_result]
|
182 |
)
|
183 |
|
184 |
-
demo.queue().launch()
|
|
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
+
def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
if randomize_seed:
|
23 |
seed = random.randint(0, MAX_SEED)
|
24 |
|
25 |
generator = torch.Generator().manual_seed(seed)
|
26 |
|
27 |
+
front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}"
|
|
|
|
|
|
|
28 |
front_image = pipe(
|
29 |
prompt=front_prompt,
|
30 |
negative_prompt=negative_prompt,
|
|
|
35 |
generator=generator
|
36 |
).images[0]
|
37 |
|
38 |
+
back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}"
|
39 |
back_image = pipe(
|
40 |
prompt=back_prompt,
|
41 |
negative_prompt=negative_prompt,
|
|
|
76 |
|
77 |
with gr.Row():
|
78 |
|
79 |
+
prompt_part1 = gr.Textbox(
|
80 |
+
value="a single",
|
81 |
+
label="Prompt Part 1",
|
82 |
+
show_label=False,
|
83 |
+
interactive=False,
|
84 |
+
container=False,
|
85 |
+
elem_id="prompt_part1",
|
86 |
+
visible=False,
|
87 |
+
)
|
88 |
+
|
89 |
+
prompt_part2 = gr.Textbox(
|
90 |
+
label="color",
|
91 |
+
show_label=False,
|
92 |
max_lines=1,
|
93 |
+
placeholder="color (e.g., color category)",
|
94 |
container=False,
|
95 |
)
|
96 |
|
97 |
+
prompt_part3 = gr.Textbox(
|
98 |
+
label="dress_type",
|
99 |
+
show_label=False,
|
100 |
max_lines=1,
|
101 |
+
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
|
102 |
container=False,
|
103 |
)
|
104 |
|
105 |
+
prompt_part4_front = gr.Textbox(
|
106 |
+
label="front design",
|
107 |
+
show_label=False,
|
108 |
max_lines=1,
|
109 |
+
placeholder="front design",
|
110 |
container=False,
|
111 |
)
|
112 |
|
113 |
+
prompt_part4_back = gr.Textbox(
|
114 |
+
label="back design",
|
115 |
+
show_label=False,
|
116 |
max_lines=1,
|
117 |
+
placeholder="back design",
|
118 |
container=False,
|
119 |
)
|
120 |
|
121 |
+
prompt_part5 = gr.Textbox(
|
122 |
+
value="hanging on the plain wall",
|
123 |
+
label="Prompt Part 5",
|
124 |
+
show_label=False,
|
125 |
+
interactive=False,
|
126 |
+
container=False,
|
127 |
+
elem_id="prompt_part5",
|
128 |
+
visible=False,
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
run_button = gr.Button("Run", scale=0)
|
133 |
|
134 |
+
front_result = gr.Image(label="Front View Result", show_label=False)
|
135 |
+
back_result = gr.Image(label="Back View Result", show_label=False)
|
136 |
|
137 |
with gr.Accordion("Advanced Settings", open=False):
|
138 |
|
|
|
140 |
label="Negative prompt",
|
141 |
max_lines=1,
|
142 |
placeholder="Enter a negative prompt",
|
143 |
+
visible=False,
|
144 |
)
|
145 |
|
146 |
seed = gr.Slider(
|
|
|
184 |
num_inference_steps = gr.Slider(
|
185 |
label="Number of inference steps",
|
186 |
minimum=1,
|
187 |
+
maximum=12,
|
188 |
step=1,
|
189 |
+
value=2,
|
190 |
)
|
191 |
|
192 |
gr.Examples(
|
193 |
examples=examples,
|
194 |
+
inputs=[prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back]
|
195 |
)
|
196 |
|
197 |
run_button.click(
|
198 |
fn=infer,
|
199 |
+
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
200 |
outputs=[front_result, back_result]
|
201 |
)
|
202 |
|
203 |
+
demo.queue().launch()
|