gaur3009 commited on
Commit
a925f00
Β·
verified Β·
1 Parent(s): e352406

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +327 -0
app.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import time
4
+ import math
5
+ import random
6
+ import torch
7
+
8
+ from diffusers import AutoPipelineForImage2Image
9
+ from PIL import Image, ImageFilter
10
+
11
+ max_64_bit_int = 2**63 - 1
12
+
13
+ # Automatic device detection
14
+ if torch.cuda.is_available():
15
+ device = "cuda"
16
+ floatType = torch.float16
17
+ variant = "fp16"
18
+ else:
19
+ device = "cpu"
20
+ floatType = torch.float32
21
+ variant = None
22
+
23
+ pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype = floatType, variant = variant)
24
+ pipe = pipe.to(device)
25
+
26
+ def update_seed(is_randomize_seed, seed):
27
+ if is_randomize_seed:
28
+ return random.randint(0, max_64_bit_int)
29
+ return seed
30
+
31
+ def toggle_debug(is_debug_mode):
32
+ return [gr.update(visible = is_debug_mode)]
33
+
34
+ def check(
35
+ source_img,
36
+ prompt,
37
+ negative_prompt,
38
+ num_inference_steps,
39
+ guidance_scale,
40
+ image_guidance_scale,
41
+ strength,
42
+ denoising_steps,
43
+ seed,
44
+ is_randomize_seed,
45
+ debug_mode,
46
+ progress = gr.Progress()
47
+ ):
48
+ if source_img is None:
49
+ raise gr.Error("Please provide an image.")
50
+
51
+ if prompt is None or prompt == "":
52
+ raise gr.Error("Please provide a prompt input.")
53
+
54
+ def redraw(
55
+ source_img,
56
+ prompt,
57
+ negative_prompt,
58
+ num_inference_steps,
59
+ guidance_scale,
60
+ image_guidance_scale,
61
+ strength,
62
+ denoising_steps,
63
+ is_randomize_seed,
64
+ seed,
65
+ debug_mode,
66
+ progress = gr.Progress()
67
+ ):
68
+ check(
69
+ source_img,
70
+ prompt,
71
+ negative_prompt,
72
+ num_inference_steps,
73
+ guidance_scale,
74
+ image_guidance_scale,
75
+ strength,
76
+ denoising_steps,
77
+ is_randomize_seed,
78
+ seed,
79
+ debug_mode
80
+ )
81
+ start = time.time()
82
+ progress(0, desc = "Preparing data...")
83
+
84
+ if negative_prompt is None:
85
+ negative_prompt = ""
86
+
87
+ if num_inference_steps is None:
88
+ num_inference_steps = 25
89
+
90
+ if guidance_scale is None:
91
+ guidance_scale = 7
92
+
93
+ if image_guidance_scale is None:
94
+ image_guidance_scale = 1.1
95
+
96
+ if strength is None:
97
+ strength = 0.5
98
+
99
+ if denoising_steps is None:
100
+ denoising_steps = 1000
101
+
102
+ if seed is None:
103
+ seed = random.randint(0, max_64_bit_int)
104
+
105
+ random.seed(seed)
106
+ torch.manual_seed(seed)
107
+
108
+ input_image = source_img.convert("RGB")
109
+
110
+ original_height, original_width, original_channel = np.array(input_image).shape
111
+ output_width = original_width
112
+ output_height = original_height
113
+
114
+ # Limited to 1 million pixels
115
+ if 1024 * 1024 < output_width * output_height:
116
+ factor = ((1024 * 1024) / (output_width * output_height))**0.5
117
+ process_width = math.floor(output_width * factor)
118
+ process_height = math.floor(output_height * factor)
119
+
120
+ limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
121
+ else:
122
+ process_width = output_width
123
+ process_height = output_height
124
+
125
+ limitation = "";
126
+
127
+ # Width and height must be multiple of 8
128
+ if (process_width % 8) != 0 or (process_height % 8) != 0:
129
+ if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
130
+ process_width = process_width - (process_width % 8) + 8
131
+ process_height = process_height - (process_height % 8) + 8
132
+ elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
133
+ process_width = process_width - (process_width % 8) + 8
134
+ process_height = process_height - (process_height % 8)
135
+ elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
136
+ process_width = process_width - (process_width % 8)
137
+ process_height = process_height - (process_height % 8) + 8
138
+ else:
139
+ process_width = process_width - (process_width % 8)
140
+ process_height = process_height - (process_height % 8)
141
+
142
+ progress(None, desc = "Processing...")
143
+ output_image = pipe(
144
+ seeds = [seed],
145
+ width = process_width,
146
+ height = process_height,
147
+ prompt = prompt,
148
+ negative_prompt = negative_prompt,
149
+ image = input_image,
150
+ num_inference_steps = num_inference_steps,
151
+ guidance_scale = guidance_scale,
152
+ image_guidance_scale = image_guidance_scale,
153
+ strength = strength,
154
+ denoising_steps = denoising_steps,
155
+ show_progress_bar = True
156
+ ).images[0]
157
+
158
+ if limitation != "":
159
+ output_image = output_image.resize((output_width, output_height))
160
+
161
+ if debug_mode == False:
162
+ input_image = None
163
+
164
+ end = time.time()
165
+ secondes = int(end - start)
166
+ minutes = math.floor(secondes / 60)
167
+ secondes = secondes - (minutes * 60)
168
+ hours = math.floor(minutes / 60)
169
+ minutes = minutes - (hours * 60)
170
+ return [
171
+ output_image,
172
+ ("Start again to get a different result. " if is_randomize_seed else "") + "The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
173
+ input_image
174
+ ]
175
+
176
+ with gr.Blocks() as interface:
177
+ gr.HTML(
178
+ """
179
+ <h1 style="text-align: center;">Image-to-Image</h1>
180
+ <p style="text-align: center;">Modifies the global render of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
181
+ <br/>
182
+ <br/>
183
+ ✨ Powered by <i>SDXL Turbo</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
184
+ <br/>
185
+ <ul>
186
+ <li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
187
+ <li>To <b>upscale</b> your image, I recommend to use <i><a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR">SUPIR</a></i>,</li>
188
+ <li>To change one <b>detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
189
+ <li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li>
190
+ <li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
191
+ <li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
192
+ <li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
193
+ </ul>
194
+ <br/>
195
+ 🐌 Slow process... ~2 hours. Your computer must <u>not</u> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
196
+ <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Image-to-Image?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
197
+ <br/>
198
+ βš–οΈ You can use, modify and share the generated images but not for commercial uses.
199
+ """
200
+ )
201
+ with gr.Column():
202
+ source_img = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
203
+ prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see", lines = 2)
204
+ strength = gr.Slider(value = 0.5, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original image, higher=follow the prompt")
205
+ with gr.Accordion("Advanced options", open = False):
206
+ negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see", value = "Ugly, malformed, noise, blur, watermark")
207
+ num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
208
+ guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
209
+ image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
210
+ denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
211
+ randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
212
+ seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
213
+ debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
214
+
215
+ submit = gr.Button("πŸš€ Redraw", variant = "primary")
216
+
217
+ redrawn_image = gr.Image(label = "Redrawn image")
218
+ information = gr.HTML()
219
+ original_image = gr.Image(label = "Original image", visible = False)
220
+
221
+ submit.click(update_seed, inputs = [
222
+ randomize_seed,
223
+ seed
224
+ ], outputs = [
225
+ seed
226
+ ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
227
+ original_image
228
+ ], queue = False, show_progress = False).then(check, inputs = [
229
+ source_img,
230
+ prompt,
231
+ negative_prompt,
232
+ num_inference_steps,
233
+ guidance_scale,
234
+ image_guidance_scale,
235
+ strength,
236
+ denoising_steps,
237
+ randomize_seed,
238
+ seed,
239
+ debug_mode
240
+ ], outputs = [], queue = False, show_progress = False).success(redraw, inputs = [
241
+ source_img,
242
+ prompt,
243
+ negative_prompt,
244
+ num_inference_steps,
245
+ guidance_scale,
246
+ image_guidance_scale,
247
+ strength,
248
+ denoising_steps,
249
+ randomize_seed,
250
+ seed,
251
+ debug_mode
252
+ ], outputs = [
253
+ redrawn_image,
254
+ information,
255
+ original_image
256
+ ], scroll_to_output = True)
257
+
258
+ gr.Examples(
259
+ run_on_click = True,
260
+ fn = redraw,
261
+ inputs = [
262
+ source_img,
263
+ prompt,
264
+ negative_prompt,
265
+ num_inference_steps,
266
+ guidance_scale,
267
+ image_guidance_scale,
268
+ strength,
269
+ denoising_steps,
270
+ randomize_seed,
271
+ seed,
272
+ debug_mode
273
+ ],
274
+ outputs = [
275
+ redrawn_image,
276
+ information,
277
+ original_image
278
+ ],
279
+ examples = [
280
+ [
281
+ "./Examples/Example1.png",
282
+ "Drawn image, line art, illustration, picture",
283
+ "3d, photo, realistic, noise, blur, watermark",
284
+ 25,
285
+ 7,
286
+ 1.1,
287
+ 0.6,
288
+ 1000,
289
+ False,
290
+ 42,
291
+ False
292
+ ],
293
+ ],
294
+ cache_examples = False,
295
+ )
296
+
297
+ gr.Markdown(
298
+ """
299
+ ## How to prompt your image
300
+ To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
301
+ ```
302
+ A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
303
+ ```
304
+ You can use round brackets to increase the importance of a part:
305
+ ```
306
+ A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
307
+ ```
308
+ You can use several levels of round brackets to even more increase the importance of a part:
309
+ ```
310
+ A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
311
+ ```
312
+ You can use number instead of several round brackets:
313
+ ```
314
+ A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
315
+ ```
316
+ You can do the same thing with square brackets to decrease the importance of a part:
317
+ ```
318
+ A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
319
+ ```
320
+ To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
321
+ ```
322
+ man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
323
+ ```
324
+ """
325
+ )
326
+
327
+ interface.queue().launch()