gaur3009 commited on
Commit
0e46931
·
verified ·
1 Parent(s): 0387f27

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -67
app.py CHANGED
@@ -1,82 +1,97 @@
1
  import gradio as gr
2
- from PIL import Image
 
 
3
  import torch
4
- from transformers import pipeline
5
- from torchvision import models, transforms
6
 
7
- # Load the models
8
- text_to_image_pipeline = pipeline("text-to-image-generation", model="CompVis/stable-diffusion-v1-4")
9
- segmentation_model = models.segmentation.deeplabv3_resnet101(pretrained=True)
10
- segmentation_model.eval()
11
 
12
- # Define transformation for the segmentation model
13
- preprocess = transforms.Compose([
14
- transforms.Resize(256),
15
- transforms.CenterCrop(224),
16
- transforms.ToTensor(),
17
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
18
- ])
 
19
 
20
- # Helper function to segment clothing area
21
- def segment_clothing(image):
22
- input_tensor = preprocess(image)
23
- input_batch = input_tensor.unsqueeze(0)
24
 
25
- with torch.no_grad():
26
- output = segmentation_model(input_batch)['out'][0]
27
- output_predictions = output.argmax(0)
28
- mask = output_predictions.byte().cpu().numpy()
29
-
30
- return mask
31
-
32
- # Function to generate base image
33
- def generate_base_image(base_prompt_part1, base_prompt_color, base_prompt_clothing):
34
- # Combine the parts to create the full base prompt
35
- base_prompt = f"{base_prompt_part1} {base_prompt_color} {base_prompt_clothing}"
36
 
37
- # Generate base clothing image
38
- base_image = text_to_image_pipeline(base_prompt)[0]
39
- base_image = Image.fromarray(base_image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- return base_image
42
 
43
- # Define the function to generate design and paste it on the clothing
44
- def generate_and_paste_design(base_image, design_prompt):
45
- # Generate design
46
- generated_image = text_to_image_pipeline(design_prompt)[0]
47
- generated_design = Image.fromarray(generated_image)
48
 
49
- # Segment the clothing area
50
- clothing_mask = segment_clothing(base_image)
 
 
 
 
51
 
52
- # Ensure the generated design fits within the clothing area
53
- generated_design = generated_design.resize(base_image.size)
54
-
55
- # Paste the design onto the clothing area
56
- clothing_area = Image.composite(generated_design, base_image, Image.fromarray(clothing_mask*255))
57
 
58
- return clothing_area
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- # Create the Gradio interface
61
- base_prompt_part1_input = gr.inputs.Textbox(lines=1, placeholder="Enter 'a single plain'")
62
- base_prompt_color_input = gr.inputs.Textbox(lines=1, placeholder="Enter color type")
63
- base_prompt_clothing_input = gr.inputs.Textbox(lines=1, placeholder="Enter clothing type")
64
- design_prompt_input = gr.inputs.Textbox(lines=1, placeholder="Enter design prompt")
65
- output_image = gr.outputs.Image(type="pil")
 
 
 
 
 
 
66
 
67
- def full_process(base_prompt_part1, base_prompt_color, base_prompt_clothing, design_prompt):
68
- # Generate the base image
69
- base_image = generate_base_image(base_prompt_part1, base_prompt_color, base_prompt_clothing)
70
-
71
- # Generate and paste the design on the base image
72
- final_image = generate_and_paste_design(base_image, design_prompt)
73
-
74
- return final_image
75
 
76
- gr.Interface(
77
- fn=full_process,
78
- inputs=[base_prompt_part1_input, base_prompt_color_input, base_prompt_clothing_input, design_prompt_input],
79
- outputs=output_image,
80
- title="Design and Paste on Clothing",
81
- description="Generate a base clothing image from the given prompts and paste the generated design onto it."
82
- ).launch()
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ from diffusers import DiffusionPipeline
5
  import torch
 
 
6
 
7
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
8
 
9
+ if torch.cuda.is_available():
10
+ torch.cuda.max_memory_allocated(device=device)
11
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
+ pipe.enable_xformers_memory_efficient_attention()
13
+ pipe = pipe.to(device)
14
+ else:
15
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
+ pipe = pipe.to(device)
17
 
18
+ MAX_SEED = np.iinfo(np.int32).max
19
+ MAX_IMAGE_SIZE = 1024
 
 
20
 
21
+ def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
+ prompt = f"{prompt_part1} {color} colored plain {dress_type} with {design} design, {prompt_part5}"
 
 
 
 
 
 
 
 
 
23
 
24
+ if randomize_seed:
25
+ seed = random.randint(0, MAX_SEED)
26
+
27
+ generator = torch.Generator().manual_seed(seed)
28
+
29
+ try:
30
+ image = pipe(
31
+ prompt=prompt,
32
+ negative_prompt=negative_prompt,
33
+ guidance_scale=guidance_scale,
34
+ num_inference_steps=num_inference_steps,
35
+ width=width,
36
+ height=height,
37
+ generator=generator
38
+ ).images[0]
39
+ print("Image generated successfully.") # Debug: Confirm image generation
40
+ except Exception as e:
41
+ print(f"Error generating image: {e}")
42
+ return None
43
 
44
+ return image
45
 
46
+ examples = [
47
+ ["red", "t-shirt", "yellow stripes"],
48
+ ["blue", "hoodie", "minimalist"],
49
+ ["red", "sweatshirt", "geometric design"],
50
+ ]
51
 
52
+ css = """
53
+ #col-container {
54
+ margin: 0 auto;
55
+ max-width: 520px;
56
+ }
57
+ """
58
 
59
+ power_device = "GPU" if torch.cuda.is_available() else "CPU"
 
 
 
 
60
 
61
+ with gr.Blocks(css=css) as demo:
62
+ with gr.Column(elem_id="col-container"):
63
+ gr.Markdown(f"""
64
+ # Text-to-Image Gradio Template
65
+ Currently running on {power_device}.
66
+ """)
67
+
68
+ with gr.Row():
69
+ prompt_part1 = gr.Textbox(value="a single", label="Prompt Part 1", show_label=False, interactive=False, container=False, elem_id="prompt_part1", visible=False)
70
+ prompt_part2 = gr.Textbox(label="color", show_label=False, max_lines=1, placeholder="color (e.g., color category)", container=False)
71
+ prompt_part3 = gr.Textbox(label="dress_type", show_label=False, max_lines=1, placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)", container=False)
72
+ prompt_part4 = gr.Textbox(label="design", show_label=False, max_lines=1, placeholder="design", container=False)
73
+ prompt_part5 = gr.Textbox(value="hanging on the plain grey wall", label="Prompt Part 5", show_label=False, interactive=False, container=False, elem_id="prompt_part5", visible=False)
74
+ run_button = gr.Button("Run", scale=0)
75
+
76
+ result = gr.Image(label="Result", show_label=False)
77
 
78
+ with gr.Accordion("Advanced Settings", open=False):
79
+ negative_prompt = gr.Textbox(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False)
80
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
81
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
82
+ with gr.Row():
83
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
84
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
85
+ with gr.Row():
86
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0)
87
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=12, step=1, value=2)
88
+
89
+ gr.Examples(examples=examples, inputs=[prompt_part2, prompt_part3, prompt_part4])
90
 
91
+ run_button.click(
92
+ fn=infer,
93
+ inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
94
+ outputs=[result]
95
+ )
 
 
 
96
 
97
+ demo.queue().launch()