Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,110 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
4 |
-
from PIL import Image
|
5 |
import cv2
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# Load ControlNet pre-trained model for depth-based warping
|
9 |
-
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch.float16)
|
10 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
11 |
-
"runwayml/stable-diffusion-v1-5",
|
12 |
-
controlnet=controlnet,
|
13 |
-
torch_dtype=torch.float16
|
14 |
-
).to("cuda")
|
15 |
-
|
16 |
-
# Function to generate depth map of the cloth
|
17 |
-
def generate_depth_map(image_path):
|
18 |
-
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
19 |
-
depth_map = cv2.Laplacian(image, cv2.CV_64F)
|
20 |
-
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
|
21 |
-
return Image.fromarray(depth_map)
|
22 |
-
|
23 |
-
# Function to blend design onto fabric using ControlNet
|
24 |
-
def blend_design_on_cloth(fabric_image, design_image, prompt="T-shirt with embedded design"):
|
25 |
-
# Generate depth map for fabric
|
26 |
-
depth_map = generate_depth_map(fabric_image)
|
27 |
-
|
28 |
-
# Generate realistic blended output
|
29 |
-
result = pipe(prompt=prompt, image=fabric_image, control_image=depth_map, num_inference_steps=30).images[0]
|
30 |
-
return result
|
31 |
|
32 |
-
#
|
33 |
-
def
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
return result
|
36 |
|
|
|
|
|
37 |
interface = gr.Interface(
|
38 |
fn=process_image,
|
39 |
-
inputs=[
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
outputs=gr.Image(type="pil", label="Blended Output"),
|
42 |
-
title="
|
43 |
-
description="Upload a
|
44 |
)
|
45 |
|
46 |
-
# Launch app
|
47 |
if __name__ == "__main__":
|
48 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from skimage.filters import sobel
|
8 |
+
from skimage.restoration import denoise_tv_chambolle
|
9 |
+
from scipy.interpolate import Rbf
|
10 |
+
from scipy.ndimage import map_coordinates
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Function to estimate a normal map from the cloth texture
|
14 |
+
def estimate_normal_map(image):
|
15 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
16 |
+
sobel_x = sobel(gray)
|
17 |
+
sobel_y = sobel(gray)
|
18 |
+
normal_map = np.stack([sobel_x, sobel_y, np.ones_like(sobel_x)], axis=-1)
|
19 |
+
normal_map = normal_map / np.linalg.norm(normal_map, axis=-1, keepdims=True)
|
20 |
+
return (normal_map * 255).astype(np.uint8)
|
21 |
+
|
22 |
+
|
23 |
+
# Function to apply Thin Plate Spline (TPS) warping
|
24 |
+
def apply_tps_warping(text_image, normal_map):
|
25 |
+
h, w = text_image.shape[:2]
|
26 |
+
x, y = np.meshgrid(np.arange(w), np.arange(h))
|
27 |
+
|
28 |
+
# Generate control points from the normal map
|
29 |
+
control_x = x + (normal_map[:, :, 0] - 128) * 0.5
|
30 |
+
control_y = y + (normal_map[:, :, 1] - 128) * 0.5
|
31 |
+
|
32 |
+
# Interpolate using Radial Basis Function (RBF)
|
33 |
+
rbf_x = Rbf(x.flatten(), y.flatten(), control_x.flatten(), function='thin_plate')
|
34 |
+
rbf_y = Rbf(x.flatten(), y.flatten(), control_y.flatten(), function='thin_plate')
|
35 |
+
|
36 |
+
warped_x = rbf_x(x, y).astype(np.float32)
|
37 |
+
warped_y = rbf_y(x, y).astype(np.float32)
|
38 |
+
|
39 |
+
# Apply warping
|
40 |
+
warped_text = cv2.remap(text_image, warped_x, warped_y, interpolation=cv2.INTER_LINEAR)
|
41 |
+
|
42 |
+
return warped_text
|
43 |
+
|
44 |
+
|
45 |
+
# Function to blend text onto cloth using Poisson editing
|
46 |
+
def blend_text_cloth(cloth, text, x=50, y=50):
|
47 |
+
cloth_bgr = np.array(cloth)
|
48 |
+
text_bgr = np.array(text)
|
49 |
+
|
50 |
+
normal_map = estimate_normal_map(cloth_bgr)
|
51 |
+
|
52 |
+
# Resize text to fit on cloth
|
53 |
+
text_resized = cv2.resize(text_bgr, (cloth_bgr.shape[1] // 2, cloth_bgr.shape[0] // 5))
|
54 |
+
|
55 |
+
# Convert to grayscale and create a mask
|
56 |
+
text_gray = cv2.cvtColor(text_resized, cv2.COLOR_BGR2GRAY)
|
57 |
+
_, mask = cv2.threshold(text_gray, 1, 255, cv2.THRESH_BINARY)
|
58 |
+
|
59 |
+
# Warp text using normal map
|
60 |
+
warped_text = apply_tps_warping(text_resized, normal_map)
|
61 |
+
|
62 |
+
# Blend the text using Poisson editing
|
63 |
+
center = (x + text_resized.shape[1] // 2, y + text_resized.shape[0] // 2)
|
64 |
+
blended = cv2.seamlessClone(warped_text, cloth_bgr, mask, center, cv2.MIXED_CLONE)
|
65 |
+
|
66 |
+
return Image.fromarray(blended)
|
67 |
+
|
68 |
+
|
69 |
+
# Gradio function
|
70 |
+
def process_image(cloth_image, text, font_size=32, font_color=(255, 0, 0), x=50, y=50):
|
71 |
+
# Convert font color input
|
72 |
+
font_color = tuple(map(int, font_color.strip("()").split(",")))
|
73 |
+
|
74 |
+
# Create a blank image with text
|
75 |
+
text_img = Image.new('RGB', (400, 200), (0, 0, 0, 0))
|
76 |
+
draw = ImageDraw.Draw(text_img)
|
77 |
+
|
78 |
+
try:
|
79 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
80 |
+
except:
|
81 |
+
font = ImageFont.load_default()
|
82 |
+
|
83 |
+
draw.text((50, 50), text, font=font, fill=font_color)
|
84 |
+
text_img = np.array(text_img)
|
85 |
+
|
86 |
+
# Blend text onto cloth
|
87 |
+
result = blend_text_cloth(cloth_image, text_img, x, y)
|
88 |
+
|
89 |
return result
|
90 |
|
91 |
+
|
92 |
+
# Gradio Interface
|
93 |
interface = gr.Interface(
|
94 |
fn=process_image,
|
95 |
+
inputs=[
|
96 |
+
gr.Image(type="pil", label="Upload Cloth Image"),
|
97 |
+
gr.Textbox(label="Text to Blend", value="Sample Text"),
|
98 |
+
gr.Slider(10, 100, step=2, label="Font Size", value=32),
|
99 |
+
gr.Textbox(label="Font Color (RGB)", value="(255, 0, 0)"),
|
100 |
+
gr.Slider(0, 1000, step=10, label="X Coordinate", value=50),
|
101 |
+
gr.Slider(0, 1000, step=10, label="Y Coordinate", value=50),
|
102 |
+
],
|
103 |
outputs=gr.Image(type="pil", label="Blended Output"),
|
104 |
+
title="Advanced Text-Cloth Blending",
|
105 |
+
description="Upload a cloth image and blend text naturally using advanced warping & blending techniques.",
|
106 |
)
|
107 |
|
108 |
+
# Launch the app
|
109 |
if __name__ == "__main__":
|
110 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|