QA_Bot / app.py
gaur3009's picture
Create app.py
4eb325f verified
raw
history blame
2.69 kB
import gradio as gr
import PyPDF2
from transformers import AutoTokenizer, AutoModel
import torch
import weaviate
import cohere
auth_config = weaviate.AuthApiKey(api_key="16LRz5YwOtnq8ov51Lhg1UuAollpsMgspulV")
client = weaviate.Client(
url="https://wkoll9rds3orbu9fhzfr2a.c0.asia-southeast1.gcp.weaviate.cloud",
auth_client_secret=auth_config
)
cohere_client = cohere.Client("LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8")
def load_pdf(file):
reader = PyPDF2.PdfReader(file)
text = ''
for page in range(len(reader.pages)):
text += reader.pages[page].extract_text()
return text
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def get_embeddings(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embeddings
def upload_document_chunks(chunks):
for idx, chunk in enumerate(chunks):
embedding = get_embeddings(chunk)
client.data_object.create(
{"content": chunk},
"Document",
vector=embedding.tolist()
)
def query_answer(query):
query_embedding = get_embeddings(query)
result = client.query.get("Document", ["content"])\
.with_near_vector({"vector": query_embedding.tolist()})\
.with_limit(3)\
.do()
return result
def generate_response(context, query):
response = cohere_client.generate(
model='command',
prompt=f"Context: {context}\n\nQuestion: {query}?\nAnswer:",
max_tokens=100
)
return response.generations[0].text.strip()
def qa_pipeline(pdf_file, query):
document_text = load_pdf(pdf_file)
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
upload_document_chunks(document_chunks)
response = query_answer(query)
context = ' '.join([doc['content'] for doc in response['data']['Get']['Document']])
answer = generate_response(context, query)
return context, answer
with gr.Blocks() as demo:
gr.Markdown("# Interactive QA Bot")
pdf_input = gr.File(label="Upload a PDF file", file_types=[".pdf"])
query_input = gr.Textbox(label="Ask a question")
doc_segments_output = gr.Textbox(label="Retrieved Document Segments")
answer_output = gr.Textbox(label="Answer")
gr.Button("Submit").click(
qa_pipeline,
inputs=[pdf_input, query_input],
outputs=[doc_segments_output, answer_output]
)
demo.launch()