QA_Bot / app.py
gaur3009's picture
Update app.py
d235fe0 verified
import os
import gradio as gr
import PyPDF2
import torch
import weaviate
from transformers import AutoTokenizer, AutoModel
from weaviate.classes.init import Auth
import cohere
# --- Configuration ---
WEAVIATE_URL = "mdw2dtjnrecv59mmqj8wg.c0.asia-southeast1.gcp.weaviate.cloud"
WEAVIATE_API_KEY = "NElkM2V5dDBVaHQ3VWEyV19PUVdFTWl3eEI3aTlLYnVZTVpnencva2dSUUt2aWR6SHg3aFY3Y0hVMVJVPV92MjAw"
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"
# --- Initialize Clients ---
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
headers={"X-Cohere-Api-Key": COHERE_API_KEY}
)
cohere_client = cohere.Client(COHERE_API_KEY)
# --- Load Sentence Transformer ---
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# --- Utility Functions ---
def load_pdf(file):
"""Extract text from a PDF file."""
reader = PyPDF2.PdfReader(file)
return ''.join([page.extract_text() for page in reader.pages if page.extract_text()])
def get_embeddings(text):
"""Compute mean-pooled embeddings using a transformer."""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embeddings
def upload_document_chunks(chunks):
"""Insert document chunks into Weaviate."""
try:
doc_collection = client.collections.get("Document")
except Exception as e:
raise RuntimeError("❌ Collection 'Document' not found. Make sure it's defined in your Weaviate schema.") from e
for chunk in chunks:
try:
embedding = get_embeddings(chunk)
doc_collection.data.insert(
properties={"content": chunk},
vector=embedding.tolist()
)
except Exception as e:
print(f"⚠️ Skipped chunk due to error: {e}")
def query_answer(query):
"""Query Weaviate for top relevant document chunks."""
query_embedding = get_embeddings(query)
try:
results = client.collections.get("Document").query.near_vector(
near_vector=query_embedding.tolist(),
limit=3
)
return results.objects
except Exception as e:
print(f"⚠️ Query error: {e}")
return []
def generate_response(context, query):
"""Generate a natural language response using Cohere."""
response = cohere_client.generate(
model='command',
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
max_tokens=100
)
return response.generations[0].text.strip()
def qa_pipeline(pdf_file, query):
"""Main QA pipeline."""
try:
document_text = load_pdf(pdf_file)
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
upload_document_chunks(document_chunks)
top_docs = query_answer(query)
context = ' '.join([doc.properties['content'] for doc in top_docs if 'content' in doc.properties])
answer = generate_response(context, query)
return str(context), str(answer)
finally:
client.close()
# --- Gradio UI ---
with gr.Blocks(theme="compact") as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
πŸ“„ Interactive QA Bot πŸ”
</div>
<p style="text-align: center; font-size: 16px; color: #4A5568;">
Upload a PDF document, ask questions, and receive answers based on the document content.
</p>
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
""")
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="πŸ“ Upload PDF", file_types=[".pdf"])
query_input = gr.Textbox(label="❓ Ask a Question", placeholder="Enter your question here...")
submit_button = gr.Button("πŸ” Submit")
with gr.Column(scale=2):
doc_segments_output = gr.Textbox(label="πŸ“œ Retrieved Document Segments", lines=10)
answer_output = gr.Textbox(label="πŸ’¬ Answer", lines=3)
submit_button.click(
fn=qa_pipeline,
inputs=[pdf_input, query_input],
outputs=[doc_segments_output, answer_output]
)
gr.Markdown("""
<style>
body {
background-color: #EDF2F7;
}
input[type="file"] {
background-color: #3182CE;
color: white;
padding: 8px;
border-radius: 5px;
}
button {
background-color: #3182CE;
color: white;
padding: 10px;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #2B6CB0;
}
textarea {
border: 2px solid #CBD5E0;
border-radius: 8px;
padding: 10px;
background-color: #FAFAFA;
}
</style>
""")
demo.launch(share=True)