Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import torch
|
|
5 |
import weaviate
|
6 |
import cohere
|
7 |
|
|
|
8 |
auth_config = weaviate.AuthApiKey(api_key="16LRz5YwOtnq8ov51Lhg1UuAollpsMgspulV")
|
9 |
client = weaviate.Client(
|
10 |
url="https://wkoll9rds3orbu9fhzfr2a.c0.asia-southeast1.gcp.weaviate.cloud",
|
@@ -12,6 +13,7 @@ client = weaviate.Client(
|
|
12 |
)
|
13 |
cohere_client = cohere.Client("LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8")
|
14 |
|
|
|
15 |
def load_pdf(file):
|
16 |
reader = PyPDF2.PdfReader(file)
|
17 |
text = ''
|
@@ -19,15 +21,18 @@ def load_pdf(file):
|
|
19 |
text += reader.pages[page].extract_text()
|
20 |
return text
|
21 |
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
23 |
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
24 |
|
|
|
25 |
def get_embeddings(text):
|
26 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
27 |
with torch.no_grad():
|
28 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
29 |
return embeddings
|
30 |
|
|
|
31 |
def upload_document_chunks(chunks):
|
32 |
for idx, chunk in enumerate(chunks):
|
33 |
embedding = get_embeddings(chunk)
|
@@ -37,6 +42,7 @@ def upload_document_chunks(chunks):
|
|
37 |
vector=embedding.tolist()
|
38 |
)
|
39 |
|
|
|
40 |
def query_answer(query):
|
41 |
query_embedding = get_embeddings(query)
|
42 |
result = client.query.get("Document", ["content"])\
|
@@ -45,6 +51,7 @@ def query_answer(query):
|
|
45 |
.do()
|
46 |
return result
|
47 |
|
|
|
48 |
def generate_response(context, query):
|
49 |
response = cohere_client.generate(
|
50 |
model='command',
|
@@ -53,32 +60,90 @@ def generate_response(context, query):
|
|
53 |
)
|
54 |
return response.generations[0].text.strip()
|
55 |
|
|
|
56 |
def qa_pipeline(pdf_file, query):
|
57 |
document_text = load_pdf(pdf_file)
|
58 |
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
|
59 |
|
|
|
60 |
upload_document_chunks(document_chunks)
|
61 |
|
|
|
62 |
response = query_answer(query)
|
63 |
context = ' '.join([doc['content'] for doc in response['data']['Get']['Document']])
|
64 |
|
|
|
65 |
answer = generate_response(context, query)
|
66 |
|
67 |
return context, answer
|
68 |
|
69 |
-
with
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
qa_pipeline,
|
80 |
inputs=[pdf_input, query_input],
|
81 |
outputs=[doc_segments_output, answer_output]
|
82 |
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
demo.launch()
|
|
|
5 |
import weaviate
|
6 |
import cohere
|
7 |
|
8 |
+
# Initialize Weaviate and Cohere clients
|
9 |
auth_config = weaviate.AuthApiKey(api_key="16LRz5YwOtnq8ov51Lhg1UuAollpsMgspulV")
|
10 |
client = weaviate.Client(
|
11 |
url="https://wkoll9rds3orbu9fhzfr2a.c0.asia-southeast1.gcp.weaviate.cloud",
|
|
|
13 |
)
|
14 |
cohere_client = cohere.Client("LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8")
|
15 |
|
16 |
+
# Function to extract text from uploaded PDF
|
17 |
def load_pdf(file):
|
18 |
reader = PyPDF2.PdfReader(file)
|
19 |
text = ''
|
|
|
21 |
text += reader.pages[page].extract_text()
|
22 |
return text
|
23 |
|
24 |
+
# Initialize transformer model and tokenizer
|
25 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
26 |
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
27 |
|
28 |
+
# Function to get embeddings for text
|
29 |
def get_embeddings(text):
|
30 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
31 |
with torch.no_grad():
|
32 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
33 |
return embeddings
|
34 |
|
35 |
+
# Upload document chunks to Weaviate
|
36 |
def upload_document_chunks(chunks):
|
37 |
for idx, chunk in enumerate(chunks):
|
38 |
embedding = get_embeddings(chunk)
|
|
|
42 |
vector=embedding.tolist()
|
43 |
)
|
44 |
|
45 |
+
# Query Weaviate for relevant document chunks
|
46 |
def query_answer(query):
|
47 |
query_embedding = get_embeddings(query)
|
48 |
result = client.query.get("Document", ["content"])\
|
|
|
51 |
.do()
|
52 |
return result
|
53 |
|
54 |
+
# Generate answer using Cohere
|
55 |
def generate_response(context, query):
|
56 |
response = cohere_client.generate(
|
57 |
model='command',
|
|
|
60 |
)
|
61 |
return response.generations[0].text.strip()
|
62 |
|
63 |
+
# Function to handle the full pipeline: uploading PDF, generating embeddings, answering queries
|
64 |
def qa_pipeline(pdf_file, query):
|
65 |
document_text = load_pdf(pdf_file)
|
66 |
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
|
67 |
|
68 |
+
# Upload document chunks to Weaviate
|
69 |
upload_document_chunks(document_chunks)
|
70 |
|
71 |
+
# Query Weaviate for document segments related to the query
|
72 |
response = query_answer(query)
|
73 |
context = ' '.join([doc['content'] for doc in response['data']['Get']['Document']])
|
74 |
|
75 |
+
# Generate response from the retrieved context
|
76 |
answer = generate_response(context, query)
|
77 |
|
78 |
return context, answer
|
79 |
|
80 |
+
# Define Gradio interface with enhanced UI
|
81 |
+
with gr.Blocks(theme="compact") as demo:
|
82 |
+
gr.Markdown(
|
83 |
+
"""
|
84 |
+
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
|
85 |
+
π Interactive QA Bot π
|
86 |
+
</div>
|
87 |
+
<p style="text-align: center; font-size: 16px; color: #4A5568;">
|
88 |
+
Upload a PDF document, ask questions, and receive answers based on the document content.<br>
|
89 |
+
Powered by <b>Weaviate</b> for document retrieval and <b>Cohere</b> for generating answers.
|
90 |
+
</p>
|
91 |
+
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
|
92 |
+
"""
|
93 |
+
)
|
94 |
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column(scale=1):
|
97 |
+
pdf_input = gr.File(label="π Upload PDF", file_types=[".pdf"], show_label=True)
|
98 |
+
query_input = gr.Textbox(
|
99 |
+
label="β Ask a Question",
|
100 |
+
placeholder="Enter your question here...",
|
101 |
+
lines=1
|
102 |
+
)
|
103 |
+
submit_button = gr.Button("π Submit")
|
104 |
+
|
105 |
+
with gr.Column(scale=2):
|
106 |
+
doc_segments_output = gr.Textbox(label="π Retrieved Document Segments", placeholder="Document segments will be displayed here...", lines=10)
|
107 |
+
answer_output = gr.Textbox(label="π¬ Answer", placeholder="The answer will appear here...", lines=3)
|
108 |
+
|
109 |
+
submit_button.click(
|
110 |
qa_pipeline,
|
111 |
inputs=[pdf_input, query_input],
|
112 |
outputs=[doc_segments_output, answer_output]
|
113 |
)
|
114 |
|
115 |
+
gr.Markdown(
|
116 |
+
"""
|
117 |
+
<style>
|
118 |
+
body {
|
119 |
+
background-color: #EDF2F7;
|
120 |
+
}
|
121 |
+
input[type="file"] {
|
122 |
+
background-color: #3182CE;
|
123 |
+
color: white;
|
124 |
+
padding: 8px;
|
125 |
+
border-radius: 5px;
|
126 |
+
}
|
127 |
+
button {
|
128 |
+
background-color: #3182CE;
|
129 |
+
color: white;
|
130 |
+
padding: 10px;
|
131 |
+
font-size: 16px;
|
132 |
+
border-radius: 5px;
|
133 |
+
cursor: pointer;
|
134 |
+
}
|
135 |
+
button:hover {
|
136 |
+
background-color: #2B6CB0;
|
137 |
+
}
|
138 |
+
textarea {
|
139 |
+
border: 2px solid #CBD5E0;
|
140 |
+
border-radius: 8px;
|
141 |
+
padding: 10px;
|
142 |
+
background-color: #FAFAFA;
|
143 |
+
}
|
144 |
+
</style>
|
145 |
+
"""
|
146 |
+
)
|
147 |
+
|
148 |
+
# Launch the Gradio interface
|
149 |
demo.launch()
|