Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,44 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import PyPDF2
|
3 |
-
from transformers import AutoTokenizer, AutoModel
|
4 |
import torch
|
5 |
import weaviate
|
6 |
-
from
|
7 |
-
from weaviate.auth import AuthApiKey
|
8 |
from weaviate.classes.init import Auth
|
9 |
import cohere
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
|
|
14 |
client = weaviate.connect_to_weaviate_cloud(
|
15 |
-
cluster_url=
|
16 |
-
auth_credentials=Auth.api_key(
|
|
|
17 |
)
|
18 |
|
19 |
-
cohere_client = cohere.Client(
|
20 |
-
|
21 |
-
def load_pdf(file):
|
22 |
-
reader = PyPDF2.PdfReader(file)
|
23 |
-
text = ''
|
24 |
-
for page in reader.pages:
|
25 |
-
text += page.extract_text()
|
26 |
-
return text
|
27 |
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
29 |
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
def get_embeddings(text):
|
|
|
32 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
33 |
with torch.no_grad():
|
34 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
35 |
return embeddings
|
36 |
|
37 |
def upload_document_chunks(chunks):
|
|
|
38 |
doc_collection = client.collections.get("Document")
|
39 |
for chunk in chunks:
|
40 |
embedding = get_embeddings(chunk)
|
@@ -44,22 +48,25 @@ def upload_document_chunks(chunks):
|
|
44 |
)
|
45 |
|
46 |
def query_answer(query):
|
|
|
47 |
query_embedding = get_embeddings(query)
|
48 |
-
|
49 |
near_vector=query_embedding.tolist(),
|
50 |
limit=3
|
51 |
)
|
52 |
-
return
|
53 |
|
54 |
def generate_response(context, query):
|
|
|
55 |
response = cohere_client.generate(
|
56 |
model='command',
|
57 |
-
prompt=f"Context: {context}\n\nQuestion: {query}
|
58 |
max_tokens=100
|
59 |
)
|
60 |
return response.generations[0].text.strip()
|
61 |
|
62 |
def qa_pipeline(pdf_file, query):
|
|
|
63 |
document_text = load_pdf(pdf_file)
|
64 |
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
|
65 |
|
@@ -71,6 +78,7 @@ def qa_pipeline(pdf_file, query):
|
|
71 |
|
72 |
return context, answer
|
73 |
|
|
|
74 |
with gr.Blocks(theme="compact") as demo:
|
75 |
gr.Markdown(
|
76 |
"""
|
@@ -133,4 +141,4 @@ with gr.Blocks(theme="compact") as demo:
|
|
133 |
"""
|
134 |
)
|
135 |
|
136 |
-
demo.launch(
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import PyPDF2
|
|
|
4 |
import torch
|
5 |
import weaviate
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
|
|
7 |
from weaviate.classes.init import Auth
|
8 |
import cohere
|
9 |
|
10 |
+
# Load credentials from environment variables
|
11 |
+
WEAVIATE_URL = "vgwhgmrlqrqqgnlb1avjaa.c0.us-west3.gcp.weaviate.cloud"
|
12 |
+
WEAVIATE_API_KEY = "7VoeYTjkOS4aHINuhllGpH4JPgE2QquFmSMn"
|
13 |
+
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"
|
14 |
|
15 |
+
# Connect to Weaviate
|
16 |
client = weaviate.connect_to_weaviate_cloud(
|
17 |
+
cluster_url=WEAVIATE_URL,
|
18 |
+
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
|
19 |
+
headers={"X-Cohere-Api-Key": COHERE_API_KEY}
|
20 |
)
|
21 |
|
22 |
+
cohere_client = cohere.Client(COHERE_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Load sentence-transformer model
|
25 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
26 |
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
27 |
|
28 |
+
def load_pdf(file):
|
29 |
+
"""Extract text from PDF file."""
|
30 |
+
reader = PyPDF2.PdfReader(file)
|
31 |
+
return ''.join([page.extract_text() for page in reader.pages if page.extract_text()])
|
32 |
+
|
33 |
def get_embeddings(text):
|
34 |
+
"""Generate mean pooled embedding for the input text."""
|
35 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
36 |
with torch.no_grad():
|
37 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
38 |
return embeddings
|
39 |
|
40 |
def upload_document_chunks(chunks):
|
41 |
+
"""Insert document chunks into Weaviate collection with embeddings."""
|
42 |
doc_collection = client.collections.get("Document")
|
43 |
for chunk in chunks:
|
44 |
embedding = get_embeddings(chunk)
|
|
|
48 |
)
|
49 |
|
50 |
def query_answer(query):
|
51 |
+
"""Search for top relevant document chunks based on query embedding."""
|
52 |
query_embedding = get_embeddings(query)
|
53 |
+
results = client.collections.get("Document").query.near_vector(
|
54 |
near_vector=query_embedding.tolist(),
|
55 |
limit=3
|
56 |
)
|
57 |
+
return results.objects
|
58 |
|
59 |
def generate_response(context, query):
|
60 |
+
"""Generate answer using Cohere model based on context and query."""
|
61 |
response = cohere_client.generate(
|
62 |
model='command',
|
63 |
+
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
|
64 |
max_tokens=100
|
65 |
)
|
66 |
return response.generations[0].text.strip()
|
67 |
|
68 |
def qa_pipeline(pdf_file, query):
|
69 |
+
"""Main pipeline for QA: parse PDF, embed chunks, query Weaviate, and generate answer."""
|
70 |
document_text = load_pdf(pdf_file)
|
71 |
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
|
72 |
|
|
|
78 |
|
79 |
return context, answer
|
80 |
|
81 |
+
# Gradio UI
|
82 |
with gr.Blocks(theme="compact") as demo:
|
83 |
gr.Markdown(
|
84 |
"""
|
|
|
141 |
"""
|
142 |
)
|
143 |
|
144 |
+
demo.launch()
|