Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
from selenium import webdriver
|
7 |
+
from selenium.webdriver.chrome.service import Service
|
8 |
+
from webdriver_manager.chrome import ChromeDriverManager
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
import torch
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
# ---------- Step 1: Scrape Celebrity Images ----------
|
14 |
+
def scrape_images(celebrity_name, num_images=20):
|
15 |
+
search_url = f"https://www.google.com/search?q={celebrity_name}+portrait&tbm=isch"
|
16 |
+
driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()))
|
17 |
+
driver.get(search_url)
|
18 |
+
os.makedirs(f"data/{celebrity_name}", exist_ok=True)
|
19 |
+
|
20 |
+
images = driver.find_elements("tag name", "img")
|
21 |
+
count = 0
|
22 |
+
|
23 |
+
for img in images:
|
24 |
+
if count >= num_images:
|
25 |
+
break
|
26 |
+
src = img.get_attribute("src")
|
27 |
+
if src and "http" in src:
|
28 |
+
try:
|
29 |
+
img_data = requests.get(src).content
|
30 |
+
with open(f"data/{celebrity_name}/{celebrity_name}_{count}.jpg", "wb") as handler:
|
31 |
+
handler.write(img_data)
|
32 |
+
count += 1
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error downloading image: {e}")
|
35 |
+
driver.quit()
|
36 |
+
|
37 |
+
# ---------- Step 2: Fine-Tuning Stable Diffusion ----------
|
38 |
+
def fine_tune_sd3(celebrity_name):
|
39 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
|
42 |
+
|
43 |
+
celeb_images_path = f"data/{celebrity_name}"
|
44 |
+
images = [Image.open(os.path.join(celeb_images_path, img)) for img in os.listdir(celeb_images_path) if img.endswith(".jpg")]
|
45 |
+
|
46 |
+
# Simple fine-tuning logic (for demonstration; deep fine-tuning requires more work)
|
47 |
+
print(f"Fine-tuning with {len(images)} images of {celebrity_name}...")
|
48 |
+
|
49 |
+
# Saving model
|
50 |
+
fine_tuned_model_path = f"models/{celebrity_name}_sd3"
|
51 |
+
os.makedirs(fine_tuned_model_path, exist_ok=True)
|
52 |
+
pipe.save_pretrained(fine_tuned_model_path)
|
53 |
+
print(f"Model saved at {fine_tuned_model_path}")
|
54 |
+
|
55 |
+
return fine_tuned_model_path
|
56 |
+
|
57 |
+
# ---------- Step 3: Generate Phone Cover Designs ----------
|
58 |
+
def generate_cover(prompt, model_path):
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_path).to(device)
|
61 |
+
|
62 |
+
image = pipe(prompt).images[0]
|
63 |
+
cover_template = Image.open("phone_cover_template.png").convert("RGBA")
|
64 |
+
image = image.resize(cover_template.size)
|
65 |
+
blended = Image.alpha_composite(cover_template, image.convert("RGBA"))
|
66 |
+
|
67 |
+
output_path = "generated_phone_cover.png"
|
68 |
+
blended.save(output_path)
|
69 |
+
return output_path
|
70 |
+
|
71 |
+
# ---------- Step 4: Gradio Deployment ----------
|
72 |
+
def launch_gradio(model_path):
|
73 |
+
def infer(prompt):
|
74 |
+
result = generate_cover(prompt, model_path)
|
75 |
+
return result
|
76 |
+
|
77 |
+
gr.Interface(fn=infer,
|
78 |
+
inputs=gr.Textbox(label="Enter a design prompt"),
|
79 |
+
outputs=gr.Image(label="Generated Phone Cover"),
|
80 |
+
title="Celebrity Phone Cover Generator").launch()
|
81 |
+
|
82 |
+
# ---------- Main Workflow ----------
|
83 |
+
if __name__ == "__main__":
|
84 |
+
celebrity = "Taylor Swift" # Example celebrity
|
85 |
+
scrape_images(celebrity, num_images=30)
|
86 |
+
|
87 |
+
model_path = fine_tune_sd3(celebrity)
|
88 |
+
|
89 |
+
# Deploy on Gradio
|
90 |
+
launch_gradio(model_path)
|