gaur3009 commited on
Commit
d66f063
·
verified ·
1 Parent(s): 00fea07

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -92
app.py CHANGED
@@ -1,95 +1,96 @@
1
- import spaces
2
- import gradio as gr
3
  import torch
 
4
  from PIL import Image
5
- from diffusers import DiffusionPipeline
6
- import random
7
-
8
- # Initialize the base model and specific LoRA
9
- base_model = "black-forest-labs/FLUX.1-dev"
10
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
11
- pipe.to("cuda")
12
-
13
- lora_repo = "XLabs-AI/flux-RealismLora"
14
- trigger_word = "" # Leave trigger_word blank if not used.
15
- pipe.load_lora_weights(lora_repo)
16
-
17
- MAX_SEED = 2**32-1
18
-
19
- @spaces.GPU(duration=80)
20
- def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
21
- # Set random seed for reproducibility
22
- if randomize_seed:
23
- seed = random.randint(0, MAX_SEED)
24
- generator = torch.Generator(device="cuda").manual_seed(seed)
25
-
26
- # Update progress bar (0% saat mulai)
27
- progress(0, "Starting image generation...")
28
-
29
- # Generate image with progress updates
30
- for i in range(1, steps + 1):
31
- # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
32
- if i % (steps // 10) == 0: # Update every 10% of the steps
33
- progress(i / steps * 100, f"Processing step {i} of {steps}...")
34
-
35
- # Generate image using the pipeline
36
- image = pipe(
37
- prompt=f"{prompt} {trigger_word}",
38
- num_inference_steps=steps,
39
- guidance_scale=cfg_scale,
40
- width=width,
41
- height=height,
42
- generator=generator,
43
- joint_attention_kwargs={"scale": lora_scale},
44
- ).images[0]
45
-
46
- # Final update (100%)
47
- progress(100, "Completed!")
48
-
49
- yield image, seed
50
-
51
- # Example cached image and settings
52
- example_image_path = "example0.webp" # Replace with the actual path to the example image
53
- example_prompt = """A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately.
54
- The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. The lanyard prominently displays the "CagliostroLab" text.
55
- Behind her, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy of her presentation."""
56
- example_cfg_scale = 3.2
57
- example_steps = 32
58
- example_width = 1152
59
- example_height = 896
60
- example_seed = 3981632454
61
- example_lora_scale = 0.85
62
-
63
- def load_example():
64
- # Load example image from file
65
- example_image = Image.open(example_image_path)
66
- return example_prompt, example_cfg_scale, example_steps, False, example_seed, example_width, example_height, example_lora_scale, example_image
67
-
68
- with gr.Blocks() as app:
69
- gr.Markdown("# Flux RealismLora Image Generator")
70
- with gr.Row():
71
- with gr.Column(scale=3):
72
- prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
73
- generate_button = gr.Button("Generate")
74
- cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
75
- steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
76
- width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
77
- height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
78
- randomize_seed = gr.Checkbox(False, label="Randomize seed")
79
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
80
- lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
81
- with gr.Column(scale=1):
82
- result = gr.Image(label="Generated Image")
83
- gr.Markdown("Generate images using RealismLora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
84
-
85
- # Automatically load example data and image when the interface is launched
86
- app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
87
 
88
- generate_button.click(
89
- run_lora,
90
- inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
91
- outputs=[result, seed]
92
- )
93
-
94
- app.queue()
95
- app.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
+ import torchvision.transforms as transforms
3
  from PIL import Image
4
+ import cv2
5
+ import numpy as np
6
+ import gradio as gr
7
+
8
+ # Load MiDaS model
9
+ midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
10
+ midas.eval()
11
+
12
+ # Preprocessing function
13
+ def preprocess_image(image):
14
+ transform = transforms.Compose([
15
+ transforms.Resize(384),
16
+ transforms.CenterCrop(384),
17
+ transforms.ToTensor(),
18
+ transforms.Normalize(
19
+ mean=[0.485, 0.456, 0.406],
20
+ std=[0.229, 0.224, 0.225],
21
+ ),
22
+ ])
23
+ return transform(image).unsqueeze(0)
24
+
25
+ # Function to generate the displacement map
26
+ def generate_displacement_map(image_a):
27
+ input_batch = preprocess_image(image_a)
28
+
29
+ with torch.no_grad():
30
+ depth_map = midas(input_batch)
31
+
32
+ depth_map = depth_map.squeeze().cpu().numpy()
33
+ depth_map = cv2.resize(depth_map, (image_a.width, image_a.height))
34
+
35
+ depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
36
+ displacement_map = depth_map * 30
37
+ return displacement_map
38
+
39
+ # Function to warp and fit Image-B onto Image-A
40
+ def fit_and_warp_design(image_a, image_b, design_bbox):
41
+ displacement_map = generate_displacement_map(image_a)
42
+
43
+ # Extract bounding box coordinates
44
+ top_left = (int(design_bbox[0]), int(design_bbox[1]))
45
+ bottom_right = (int(design_bbox[2]), int(design_bbox[3]))
46
+
47
+ # Resize the design to fit within the specified bounding box
48
+ design_width = bottom_right[0] - top_left[0]
49
+ design_height = bottom_right[1] - top_left[1]
50
+ image_b = image_b.resize((design_width, design_height))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ # Create a blank canvas with the same size as Image-A
53
+ canvas = Image.new('RGBA', (displacement_map.shape[1], displacement_map.shape[0]), (0, 0, 0, 0))
54
+ canvas.paste(image_b, top_left, image_b)
55
+ canvas_np = np.array(canvas)
56
+
57
+ h, w = displacement_map.shape
58
+ y_indices, x_indices = np.indices((h, w), dtype=np.float32)
59
+ x_displacement = (x_indices + displacement_map).astype(np.float32)
60
+ y_displacement = (y_indices + displacement_map).astype(np.float32)
61
+
62
+ x_displacement = np.clip(x_displacement, 0, w - 1)
63
+ y_displacement = np.clip(y_displacement, 0, h - 1)
64
+
65
+ warped_canvas = cv2.remap(canvas_np, x_displacement, y_displacement, cv2.INTER_LINEAR, borderMode=cv2.BORDER_TRANSPARENT)
66
+
67
+ image_a_rgba = image_a.convert("RGBA")
68
+ image_a_np = np.array(image_a_rgba)
69
+
70
+ non_transparent_pixels = warped_canvas[..., 3] > 0
71
+ image_a_np[non_transparent_pixels] = warped_canvas[non_transparent_pixels]
72
+
73
+ final_image = Image.fromarray(image_a_np)
74
+ return final_image
75
+
76
+ # Gradio interface function
77
+ def process_images(image_a, image_b, design_bbox):
78
+ result = fit_and_warp_design(image_a, image_b, design_bbox)
79
+ return result
80
+
81
+ # Gradio UI components
82
+ image_input_a = gr.inputs.Image(label="Upload Clothing Image", type="pil")
83
+ image_input_b = gr.inputs.Image(label="Upload Design Image", type="pil")
84
+ design_bbox_input = gr.inputs.Image(tool="select", label="Adjust Design Position and Size")
85
+
86
+ # Define the Gradio interface
87
+ iface = gr.Interface(
88
+ fn=process_images,
89
+ inputs=[image_input_a, design_bbox_input],
90
+ outputs="image",
91
+ title="Clothing Design Fitting with Drag-and-Drop",
92
+ description="Upload a clothing image and a design image. Drag and resize the design onto the clothing using the cursor.",
93
+ )
94
+
95
+ # Launch the interface
96
+ iface.launch()