import torch import torchvision.transforms as transforms from PIL import Image import cv2 import numpy as np import gradio as gr # Load MiDaS model midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large", trust_repo=True) midas.eval() # Preprocessing function def preprocess_image(image): transform = transforms.Compose([ transforms.Resize(384), transforms.CenterCrop(384), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ]) return transform(image).unsqueeze(0) # Function to generate the displacement map def generate_displacement_map(image_a): input_batch = preprocess_image(image_a) with torch.no_grad(): depth_map = midas(input_batch) depth_map = depth_map.squeeze().cpu().numpy() depth_map = cv2.resize(depth_map, (image_a.width, image_a.height)) depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) displacement_map = depth_map * 30 return displacement_map # Function to warp and fit Image-B onto Image-A def fit_and_warp_design(image_a, image_b, top_left_x, top_left_y, bottom_right_x, bottom_right_y): displacement_map = generate_displacement_map(image_a) # Extract bounding box coordinates top_left = (int(top_left_x), int(top_left_y)) bottom_right = (int(bottom_right_x), int(bottom_right_y)) # Resize the design to fit within the specified bounding box design_width = bottom_right[0] - top_left[0] design_height = bottom_right[1] - top_left[1] image_b = image_b.convert("RGBA") # Ensure design image has an alpha channel image_b = image_b.resize((design_width, design_height)) # Create a blank canvas with the same size as Image-A canvas = Image.new('RGBA', (displacement_map.shape[1], displacement_map.shape[0]), (0, 0, 0, 0)) canvas.paste(image_b, top_left, image_b) # Use image_b as the mask for pasting canvas_np = np.array(canvas) h, w = displacement_map.shape y_indices, x_indices = np.indices((h, w), dtype=np.float32) x_displacement = (x_indices + displacement_map).astype(np.float32) y_displacement = (y_indices + displacement_map).astype(np.float32) x_displacement = np.clip(x_displacement, 0, w - 1) y_displacement = np.clip(y_displacement, 0, h - 1) warped_canvas = cv2.remap(canvas_np, x_displacement, y_displacement, cv2.INTER_LINEAR, borderMode=cv2.BORDER_TRANSPARENT) image_a_rgba = image_a.convert("RGBA") image_a_np = np.array(image_a_rgba) non_transparent_pixels = warped_canvas[..., 3] > 0 image_a_np[non_transparent_pixels] = warped_canvas[non_transparent_pixels] final_image = Image.fromarray(image_a_np) return final_image # Gradio interface function def process_images(image_a, image_b, top_left_x, top_left_y, bottom_right_x, bottom_right_y): result = fit_and_warp_design(image_a, image_b, top_left_x, top_left_y, bottom_right_x, bottom_right_y) return result # Gradio UI components image_input_a = gr.Image(label="Upload Clothing Image", type="pil") image_input_b = gr.Image(label="Upload Design Image", type="pil") top_left_x = gr.Slider(minimum=0, maximum=1000, label="Top-left X Coordinate", value=50) top_left_y = gr.Slider(minimum=0, maximum=1000, label="Top-left Y Coordinate", value=100) bottom_right_x = gr.Slider(minimum=0, maximum=1000, label="Bottom-right X Coordinate", value=300) bottom_right_y = gr.Slider(minimum=0, maximum=1000, label="Bottom-right Y Coordinate", value=400) # Define the Gradio interface iface = gr.Interface( fn=process_images, inputs=[image_input_a, image_input_b, top_left_x, top_left_y, bottom_right_x, bottom_right_y], outputs="image", title="Clothing Design Fitting with Adjustable Bounding Box", description="Upload a clothing image and a design image. Adjust the design's position and size using sliders to fit the design onto the clothing.", ) # Launch the interface iface.launch()