File size: 8,387 Bytes
43ce2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5063e0
 
43ce2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5063e0
 
43ce2e9
b5063e0
 
 
 
 
 
 
 
 
 
43ce2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import datetime
from typing import List, Dict, Optional
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import gradio as gr
from transformers import pipeline as hf_pipeline

class StableDiffusionAgent:
    def __init__(self, config: Optional[Dict] = None):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.default_config = {
            "model": "stabilityai/stable-diffusion-2-1",
            "safety_checker": True,
            "max_resolution": 1024,
            "art_styles": ["realistic", "anime", "cyberpunk", "watercolor", "pixel-art"],
            "default_style": "realistic",
            "memory_size": 10,
            "prompt_enhancer": True
        }
        self.config = {**self.default_config, **(config or {})}
        
        self._initialize_models()
        self.memory = []
        self.user_profiles = {}
        self.current_style = self.config["default_style"]

    def _initialize_models(self):
        """Load all required models"""
        # Text-to-Image Pipeline
        self.sd_pipeline = StableDiffusionPipeline.from_pretrained(
            self.config["model"],
            torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
            safety_checker=None if not self.config["safety_checker"] else None
        ).to(self.device)
        
        self.sd_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
            self.sd_pipeline.scheduler.config
        )
        
        if self.device == "cuda":
            self.sd_pipeline.enable_xformers_memory_efficient_attention()
            self.sd_pipeline.enable_attention_slicing()

        # Prompt Enhancement Model
        if self.config["prompt_enhancer"]:
            self.prompt_pipeline = hf_pipeline(
                "text2text-generation",
                model="microsoft/Promptist"
            )

    def _enhance_prompt(self, prompt: str) -> str:
        """Improve prompt using LLM"""
        if self.config["prompt_enhancer"]:
            try:
                return self.prompt_pipeline(prompt, max_length=256)[0]["generated_text"]
            except:
                return prompt
        return prompt

    def _apply_style(self, prompt: str, style: str) -> str:
        """Apply artistic style to prompt"""
        style_templates = {
            "anime": "anime style, vibrant colors, detailed line art",
            "cyberpunk": "neon lights, cyberpunk style, rainy night, futuristic",
            "watercolor": "watercolor painting, soft edges, artistic",
            "pixel-art": "8-bit pixel art, retro gaming style"
        }
        return f"{prompt}, {style_templates.get(style, '')}"

    def generate(
        self,
        user_id: str,
        prompt: str,
        negative_prompt: str = "",
        style: Optional[str] = None,
        **kwargs
    ) -> Dict:
        """Main generation method with user context"""
        # Get user preferences
        user_prefs = self.user_profiles.get(user_id, {})
        
        # Enhance prompt
        enhanced_prompt = self._enhance_prompt(prompt)
        
        # Apply style
        style = style or user_prefs.get("style", self.current_style)
        final_prompt = self._apply_style(enhanced_prompt, style)
        
        # Generate image
        results = self._generate_image(
            prompt=final_prompt,
            negative_prompt=negative_prompt,
            **{**self._get_default_params(), **kwargs}
        )
        
        # Update memory and user profile
        self._update_memory(user_id, prompt, results)
        return {
            "images": results["images"],
            "metadata": {
                "enhanced_prompt": enhanced_prompt,
                "style": style,
                "seed": results["seed"],
                "timestamp": datetime.datetime.now().isoformat()
            }
        }

    def _generate_image(self, **kwargs) -> Dict:
        """Low-level generation with safety checks"""
        generator = torch.Generator(device=self.device)
        seed = kwargs.pop("seed", None)
        if seed is not None:
            generator = generator.manual_seed(seed)
            
        results = self.sd_pipeline(**kwargs, generator=generator)
        
        # Filter NSFW content
        safe_images = []
        for i, img in enumerate(results.images):
            if results.nsfw_content_detected and results.nsfw_content_detected[i]:
                safe_images.append(self._create_black_image(kwargs["width"], kwargs["height"]))
            else:
                safe_images.append(img)
                
        return {
            "images": safe_images,
            "seed": seed or generator.initial_seed()
        }

    def _update_memory(self, user_id: str, prompt: str, results: Dict):
        """Store generation history"""
        self.memory.append({
            "user_id": user_id,
            "prompt": prompt,
            "timestamp": datetime.datetime.now(),
            "metadata": results["metadata"]
        })
        if len(self.memory) > self.config["memory_size"]:
            self.memory.pop(0)

    def _get_default_params(self):
        return {
            "height": 512,
            "width": 512,
            "num_images_per_prompt": 1,
            "num_inference_steps": 50,
            "guidance_scale": 7.5
        }

    def _create_black_image(self, width: int, height: int) -> Image.Image:
        return Image.new("RGB", (width, height), (0, 0, 0))

    # ----------- User Interaction Methods -----------
    def set_style(self, user_id: str, style: str):
        if style in self.config["art_styles"]:
            self.user_profiles.setdefault(user_id, {})["style"] = style
            return f"Style set to {style}"
        return f"Invalid style. Available styles: {', '.join(self.config['art_styles'])}"

    def get_history(self, user_id: str) -> List[Dict]:
        return [entry for entry in self.memory if entry["user_id"] == user_id]

# Update the Gradio interface section as follows:

# ------------------ Gradio Interface ------------------
def create_web_interface(agent: StableDiffusionAgent):
    css = """
    .gradio-container {max-width: 900px!important}
    .output-image img {box-shadow: 0 4px 8px rgba(0,0,0,0.1)}
    """
    
    with gr.Blocks(css=css) as interface:
        gr.Markdown("# 🎨 AI Art Generator Agent")
        
        with gr.Row():
            with gr.Column(scale=1):
                user_id = gr.Textbox(label="User ID", placeholder="Enter unique identifier")
                prompt = gr.Textbox(label="Prompt", lines=3)
                negative_prompt = gr.Textbox(label="Negative Prompt")
                style = gr.Dropdown(agent.config["art_styles"], label="Art Style")
                generate_btn = gr.Button("Generate", variant="primary")
                
            with gr.Column(scale=1):
                output_image = gr.Image(label="Generated Art", elem_classes=["output-image"])
                meta_info = gr.JSON(label="Generation Metadata")
        
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                steps = gr.Slider(10, 100, value=50, label="Steps")
                guidance = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
                seed = gr.Number(label="Seed (optional)")

        # Modified click handler
        generate_btn.click(
            fn=lambda user_id, prompt, negative_prompt, style, steps, guidance, seed: 
                agent.generate(
                    user_id=user_id,
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    style=style,
                    num_inference_steps=steps,
                    guidance_scale=guidance,
                    seed=seed
                ),
            inputs=[user_id, prompt, negative_prompt, style, steps, guidance, seed],
            outputs=[output_image, meta_info]
        )
        
    return interface

if __name__ == "__main__":
    # Initialize agent
    config = {
        "prompt_enhancer": True,
        "art_styles": ["realistic", "anime", "cyberpunk", "watercolor"]
    }
    agent = StableDiffusionAgent(config)
    
    # Launch Gradio interface
    interface = create_web_interface(agent)
    interface.launch(server_port=7860, share=True)