Spaces:
Sleeping
Sleeping
File size: 8,387 Bytes
43ce2e9 b5063e0 43ce2e9 b5063e0 43ce2e9 b5063e0 43ce2e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import torch
import datetime
from typing import List, Dict, Optional
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import gradio as gr
from transformers import pipeline as hf_pipeline
class StableDiffusionAgent:
def __init__(self, config: Optional[Dict] = None):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.default_config = {
"model": "stabilityai/stable-diffusion-2-1",
"safety_checker": True,
"max_resolution": 1024,
"art_styles": ["realistic", "anime", "cyberpunk", "watercolor", "pixel-art"],
"default_style": "realistic",
"memory_size": 10,
"prompt_enhancer": True
}
self.config = {**self.default_config, **(config or {})}
self._initialize_models()
self.memory = []
self.user_profiles = {}
self.current_style = self.config["default_style"]
def _initialize_models(self):
"""Load all required models"""
# Text-to-Image Pipeline
self.sd_pipeline = StableDiffusionPipeline.from_pretrained(
self.config["model"],
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
safety_checker=None if not self.config["safety_checker"] else None
).to(self.device)
self.sd_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.sd_pipeline.scheduler.config
)
if self.device == "cuda":
self.sd_pipeline.enable_xformers_memory_efficient_attention()
self.sd_pipeline.enable_attention_slicing()
# Prompt Enhancement Model
if self.config["prompt_enhancer"]:
self.prompt_pipeline = hf_pipeline(
"text2text-generation",
model="microsoft/Promptist"
)
def _enhance_prompt(self, prompt: str) -> str:
"""Improve prompt using LLM"""
if self.config["prompt_enhancer"]:
try:
return self.prompt_pipeline(prompt, max_length=256)[0]["generated_text"]
except:
return prompt
return prompt
def _apply_style(self, prompt: str, style: str) -> str:
"""Apply artistic style to prompt"""
style_templates = {
"anime": "anime style, vibrant colors, detailed line art",
"cyberpunk": "neon lights, cyberpunk style, rainy night, futuristic",
"watercolor": "watercolor painting, soft edges, artistic",
"pixel-art": "8-bit pixel art, retro gaming style"
}
return f"{prompt}, {style_templates.get(style, '')}"
def generate(
self,
user_id: str,
prompt: str,
negative_prompt: str = "",
style: Optional[str] = None,
**kwargs
) -> Dict:
"""Main generation method with user context"""
# Get user preferences
user_prefs = self.user_profiles.get(user_id, {})
# Enhance prompt
enhanced_prompt = self._enhance_prompt(prompt)
# Apply style
style = style or user_prefs.get("style", self.current_style)
final_prompt = self._apply_style(enhanced_prompt, style)
# Generate image
results = self._generate_image(
prompt=final_prompt,
negative_prompt=negative_prompt,
**{**self._get_default_params(), **kwargs}
)
# Update memory and user profile
self._update_memory(user_id, prompt, results)
return {
"images": results["images"],
"metadata": {
"enhanced_prompt": enhanced_prompt,
"style": style,
"seed": results["seed"],
"timestamp": datetime.datetime.now().isoformat()
}
}
def _generate_image(self, **kwargs) -> Dict:
"""Low-level generation with safety checks"""
generator = torch.Generator(device=self.device)
seed = kwargs.pop("seed", None)
if seed is not None:
generator = generator.manual_seed(seed)
results = self.sd_pipeline(**kwargs, generator=generator)
# Filter NSFW content
safe_images = []
for i, img in enumerate(results.images):
if results.nsfw_content_detected and results.nsfw_content_detected[i]:
safe_images.append(self._create_black_image(kwargs["width"], kwargs["height"]))
else:
safe_images.append(img)
return {
"images": safe_images,
"seed": seed or generator.initial_seed()
}
def _update_memory(self, user_id: str, prompt: str, results: Dict):
"""Store generation history"""
self.memory.append({
"user_id": user_id,
"prompt": prompt,
"timestamp": datetime.datetime.now(),
"metadata": results["metadata"]
})
if len(self.memory) > self.config["memory_size"]:
self.memory.pop(0)
def _get_default_params(self):
return {
"height": 512,
"width": 512,
"num_images_per_prompt": 1,
"num_inference_steps": 50,
"guidance_scale": 7.5
}
def _create_black_image(self, width: int, height: int) -> Image.Image:
return Image.new("RGB", (width, height), (0, 0, 0))
# ----------- User Interaction Methods -----------
def set_style(self, user_id: str, style: str):
if style in self.config["art_styles"]:
self.user_profiles.setdefault(user_id, {})["style"] = style
return f"Style set to {style}"
return f"Invalid style. Available styles: {', '.join(self.config['art_styles'])}"
def get_history(self, user_id: str) -> List[Dict]:
return [entry for entry in self.memory if entry["user_id"] == user_id]
# Update the Gradio interface section as follows:
# ------------------ Gradio Interface ------------------
def create_web_interface(agent: StableDiffusionAgent):
css = """
.gradio-container {max-width: 900px!important}
.output-image img {box-shadow: 0 4px 8px rgba(0,0,0,0.1)}
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# 🎨 AI Art Generator Agent")
with gr.Row():
with gr.Column(scale=1):
user_id = gr.Textbox(label="User ID", placeholder="Enter unique identifier")
prompt = gr.Textbox(label="Prompt", lines=3)
negative_prompt = gr.Textbox(label="Negative Prompt")
style = gr.Dropdown(agent.config["art_styles"], label="Art Style")
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Art", elem_classes=["output-image"])
meta_info = gr.JSON(label="Generation Metadata")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
steps = gr.Slider(10, 100, value=50, label="Steps")
guidance = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
seed = gr.Number(label="Seed (optional)")
# Modified click handler
generate_btn.click(
fn=lambda user_id, prompt, negative_prompt, style, steps, guidance, seed:
agent.generate(
user_id=user_id,
prompt=prompt,
negative_prompt=negative_prompt,
style=style,
num_inference_steps=steps,
guidance_scale=guidance,
seed=seed
),
inputs=[user_id, prompt, negative_prompt, style, steps, guidance, seed],
outputs=[output_image, meta_info]
)
return interface
if __name__ == "__main__":
# Initialize agent
config = {
"prompt_enhancer": True,
"art_styles": ["realistic", "anime", "cyberpunk", "watercolor"]
}
agent = StableDiffusionAgent(config)
# Launch Gradio interface
interface = create_web_interface(agent)
interface.launch(server_port=7860, share=True) |