gaur3009 commited on
Commit
8956d97
·
verified ·
1 Parent(s): 1a2f513

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -6
app.py CHANGED
@@ -3,6 +3,9 @@ import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
5
  import torch
 
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
@@ -19,7 +22,7 @@ MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
  def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
- prompt = f"{prompt_part1} {color} colored {dress_type} with {design} design, {prompt_part5} and also show the back, left and right side of the cloth in the form of collage with the front view"
23
 
24
  if randomize_seed:
25
  seed = random.randint(0, MAX_SEED)
@@ -35,13 +38,18 @@ def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt
35
  height=height,
36
  generator=generator
37
  ).images[0]
 
 
 
 
 
38
 
39
- return image
40
 
41
  examples = [
42
- "red, t-shirt, yellow stripes",
43
- "blue, hoodie, minimalist",
44
- "red, sweat shirt, geometric design",
45
  ]
46
 
47
  css = """
@@ -172,7 +180,7 @@ with gr.Blocks(css=css) as demo:
172
 
173
  gr.Examples(
174
  examples=examples,
175
- inputs=[prompt_part2]
176
  )
177
 
178
  run_button.click(
 
3
  import random
4
  from diffusers import DiffusionPipeline
5
  import torch
6
+ import base64
7
+ from io import BytesIO
8
+ from PIL import Image
9
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
 
22
  MAX_IMAGE_SIZE = 1024
23
 
24
  def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
25
+ prompt = f"{prompt_part1} {color} colored {dress_type} with {design} design, {prompt_part5}"
26
 
27
  if randomize_seed:
28
  seed = random.randint(0, MAX_SEED)
 
38
  height=height,
39
  generator=generator
40
  ).images[0]
41
+
42
+ # Convert the PIL image to base64
43
+ buffered = BytesIO()
44
+ image.save(buffered, format="PNG")
45
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
46
 
47
+ return img_str
48
 
49
  examples = [
50
+ ["red", "t-shirt", "yellow stripes"],
51
+ ["blue", "hoodie", "minimalist"],
52
+ ["red", "sweatshirt", "geometric design"],
53
  ]
54
 
55
  css = """
 
180
 
181
  gr.Examples(
182
  examples=examples,
183
+ inputs=[prompt_part2, prompt_part3, prompt_part4]
184
  )
185
 
186
  run_button.click(