Spaces:
Runtime error
Runtime error
File size: 1,957 Bytes
61e8157 dee73d2 61e8157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
import os
hf_token = os.environ.get("HF_TOKEN")
import torch
from diffusers import StableDiffusion3Pipeline
from diffusers.models.controlnet_sd3 import ControlNetSD3Model
from diffusers.utils.torch_utils import randn_tensor
from diffusers.examples.community.pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline
# load pipeline
base_model = 'stabilityai/stable-diffusion-3-medium-diffusers'
pipe = StableDiffusion3CommonPipeline.from_pretrained(
base_model,
controlnet_list=['InstantX/SD3-Controlnet-Canny'],
hf_token=hf_token
)
pipe.to('cuda:0', torch.float16)
def infer(image_in, prompt):
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
n_prompt = 'NSFW, nude, naked, porn, ugly'
# controlnet config
controlnet_conditioning = [
dict(
control_index=0,
control_image=load_image('https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg'),
control_weight=0.7,
control_pooled_projections='zeros'
)
]
# infer
image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
controlnet_conditioning=controlnet_conditioning,
num_inference_steps=28,
guidance_scale=7.0,
height=1024,
width=1024,
latents=latents,
).images[0]
return image
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("""
# SD3 ControlNet
""")
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
result = gr.Image(label="Result")
submit_btn.click(
fn = infer,
inputs = [image_in, prompt],
outputs = [result],
show_api=False
)
demo.queue().launch() |