Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
hf_token = os.environ.get("HF_TOKEN") | |
import torch | |
from diffusers import StableDiffusion3Pipeline | |
from diffusers.models.controlnet_sd3 import ControlNetSD3Model | |
from diffusers.utils.torch_utils import randn_tensor | |
from pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline | |
# load pipeline | |
base_model = 'stabilityai/stable-diffusion-3-medium-diffusers' | |
pipe = StableDiffusion3CommonPipeline.from_pretrained( | |
base_model, | |
controlnet_list=['InstantX/SD3-Controlnet-Canny'], | |
hf_token=hf_token | |
) | |
pipe.to('cuda:0', torch.float16) | |
def infer(image_in, prompt): | |
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' | |
n_prompt = 'NSFW, nude, naked, porn, ugly' | |
# controlnet config | |
controlnet_conditioning = [ | |
dict( | |
control_index=0, | |
control_image=load_image('https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg'), | |
control_weight=0.7, | |
control_pooled_projections='zeros' | |
) | |
] | |
# infer | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=n_prompt, | |
controlnet_conditioning=controlnet_conditioning, | |
num_inference_steps=28, | |
guidance_scale=7.0, | |
height=1024, | |
width=1024, | |
latents=latents, | |
).images[0] | |
return image | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown(""" | |
# SD3 ControlNet | |
""") | |
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath") | |
prompt = gr.Textbox(label="Prompt") | |
submit_btn = gr.Button("Submit") | |
result = gr.Image(label="Result") | |
submit_btn.click( | |
fn = infer, | |
inputs = [image_in, prompt], | |
outputs = [result], | |
show_api=False | |
) | |
demo.queue().launch() |