fffiloni commited on
Commit
bfc70f6
·
verified ·
1 Parent(s): ab6e3a1

add tile controlnet

Browse files
Files changed (1) hide show
  1. app.py +72 -40
app.py CHANGED
@@ -14,12 +14,9 @@ from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
14
  from diffusers.utils import load_image
15
 
16
  # load pipeline
17
- controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
18
- pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
19
- "stabilityai/stable-diffusion-3-medium-diffusers",
20
- controlnet=controlnet
21
- )
22
- pipe.to("cuda", torch.float16)
23
 
24
  def resize_image(input_path, output_path, target_height):
25
  # Open the input image
@@ -41,34 +38,57 @@ def resize_image(input_path, output_path, target_height):
41
  return output_path, new_width, target_height
42
 
43
  @spaces.GPU(duration=90)
44
- def infer(image_in, prompt, inference_steps, guidance_scale, control_weight, progress=gr.Progress(track_tqdm=True)):
45
 
46
  n_prompt = 'NSFW, nude, naked, porn, ugly'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- # Canny preprocessing
49
- image_to_canny = load_image(image_in)
50
- image_to_canny = np.array(image_to_canny)
51
- image_to_canny = cv2.Canny(image_to_canny, 100, 200)
52
- image_to_canny = image_to_canny[:, :, None]
53
- image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
54
- image_to_canny = Image.fromarray(image_to_canny)
55
-
 
 
56
 
57
  # infer
58
  image = pipe(
59
  prompt=prompt,
60
  negative_prompt=n_prompt,
61
- control_image=image_to_canny,
62
  controlnet_conditioning_scale=control_weight,
63
  num_inference_steps=inference_steps,
64
  guidance_scale=guidance_scale,
65
  ).images[0]
66
 
67
- image_redim, w, h = resize_image(image_in, "resized_input.jpg", 1024)
68
-
69
- image = image.resize((w, h), Image.LANCZOS)
70
 
71
- return image, image_to_canny
 
 
 
 
 
 
 
72
 
73
  css="""
74
  #col-container{
@@ -82,28 +102,40 @@ with gr.Blocks(css=css) as demo:
82
  # SD3 ControlNet
83
 
84
  Experiment with Stable Diffusion 3 ControlNet models proposed and maintained by the InstantX team.<br />
85
- Model Card: [InstantX/SD3-Controlnet-Canny](https://huggingface.co/InstantX/SD3-Controlnet-Canny)
86
-
87
  """)
88
- with gr.Row():
89
- with gr.Column():
90
- image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
91
- prompt = gr.Textbox(label="Prompt")
92
- with gr.Accordion("Advanced settings", open=False):
93
- with gr.Column():
94
- with gr.Row():
95
- inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25)
96
- guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0)
97
- control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7)
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
- submit_btn = gr.Button("Submit")
100
- with gr.Column():
101
- result = gr.Image(label="Result")
102
- canny_used = gr.Image(label="Preprocessed Canny")
103
-
104
- submit_btn.click(
105
- fn = infer,
106
- inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight],
 
107
  outputs = [result, canny_used],
108
  show_api=False
109
  )
 
14
  from diffusers.utils import load_image
15
 
16
  # load pipeline
17
+ controlnet_canny = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
18
+ controlne_tile = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile")
19
+
 
 
 
20
 
21
  def resize_image(input_path, output_path, target_height):
22
  # Open the input image
 
38
  return output_path, new_width, target_height
39
 
40
  @spaces.GPU(duration=90)
41
+ def infer_canny(image_in, prompt, control_type, inference_steps, guidance_scale, control_weight, progress=gr.Progress(track_tqdm=True)):
42
 
43
  n_prompt = 'NSFW, nude, naked, porn, ugly'
44
+
45
+ if control_type == "canny":
46
+ pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
47
+ "stabilityai/stable-diffusion-3-medium-diffusers",
48
+ controlnet=controlnet_canny
49
+ )
50
+
51
+ # Canny preprocessing
52
+ image_to_canny = load_image(image_in)
53
+ image_to_canny = np.array(image_to_canny)
54
+ image_to_canny = cv2.Canny(image_to_canny, 100, 200)
55
+ image_to_canny = image_to_canny[:, :, None]
56
+ image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
57
+ image_to_canny = Image.fromarray(image_to_canny)
58
+
59
+ control_image = image_to_canny
60
 
61
+ elif control_type == "tile":
62
+ pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
63
+ "stabilityai/stable-diffusion-3-medium-diffusers",
64
+ controlnet=controlnet_tile
65
+ )
66
+
67
+ control_image = load_image(image_in)
68
+
69
+
70
+ pipe.to("cuda", torch.float16)
71
 
72
  # infer
73
  image = pipe(
74
  prompt=prompt,
75
  negative_prompt=n_prompt,
76
+ control_image=control_image,
77
  controlnet_conditioning_scale=control_weight,
78
  num_inference_steps=inference_steps,
79
  guidance_scale=guidance_scale,
80
  ).images[0]
81
 
82
+ if control_type == "canny":
 
 
83
 
84
+ image_redim, w, h = resize_image(image_in, "resized_input.jpg", 1024)
85
+ image = image.resize((w, h), Image.LANCZOS)
86
+
87
+ return image, gr.update(value=image_to_canny, visible=True)
88
+
89
+ elif control_type == "tile":
90
+ return image, gr.update(value=None, visible=False)
91
+
92
 
93
  css="""
94
  #col-container{
 
102
  # SD3 ControlNet
103
 
104
  Experiment with Stable Diffusion 3 ControlNet models proposed and maintained by the InstantX team.<br />
 
 
105
  """)
106
+
107
+ with gr.Column():
108
+ gr.Mardown("""
109
+ Model Card: [InstantX/SD3-Controlnet-Canny](https://huggingface.co/InstantX/SD3-Controlnet-Canny)
110
+ """)
111
+ with gr.Row():
112
+ with gr.Column():
113
+ image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
114
+ prompt = gr.Textbox(label="Prompt")
115
+ control_type = gr.Radio(
116
+ label="Control type",
117
+ choices = [
118
+ "canny",
119
+ "tile"
120
+ ],
121
+ value="canny"
122
+ )
123
+ with gr.Accordion("Advanced settings", open=False):
124
+ with gr.Column():
125
+ with gr.Row():
126
+ inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25)
127
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0)
128
+ control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7)
129
 
130
+ submit_canny_btn = gr.Button("Submit")
131
+ with gr.Column():
132
+ result = gr.Image(label="Result")
133
+ canny_used = gr.Image(label="Preprocessed Canny", visible=False)
134
+
135
+
136
+ submit_canny_btn.click(
137
+ fn = infer_canny,
138
+ inputs = [image_in, prompt, control_type, inference_steps, guidance_scale, control_weight],
139
  outputs = [result, canny_used],
140
  show_api=False
141
  )