Spaces:
Running
Running
updated ui in gradio
Browse files
app.py
CHANGED
@@ -1,119 +1,251 @@
|
|
1 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModel, AutoTokenizer
|
2 |
-
import torch
|
3 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
-
import numpy as np
|
5 |
-
import gradio as gr
|
6 |
-
from collections import Counter
|
7 |
-
import pandas as pd
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Updated prompt for statement-like output
|
34 |
-
text = "rephrase as a statement: " + sentence
|
35 |
-
encoding = tokenizer.encode_plus(text, padding=False, return_tensors="pt")
|
36 |
-
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
37 |
-
|
38 |
-
beam_outputs = model.generate(
|
39 |
-
input_ids=input_ids,
|
40 |
-
attention_mask=attention_masks,
|
41 |
-
do_sample=True,
|
42 |
-
max_length=128,
|
43 |
-
top_k=40,
|
44 |
-
top_p=0.85,
|
45 |
-
early_stopping=True,
|
46 |
-
num_return_sequences=5
|
47 |
-
)
|
48 |
-
|
49 |
-
# Decode and format paraphrases with numbering
|
50 |
-
paraphrases = []
|
51 |
-
for i, line in enumerate(beam_outputs, 1):
|
52 |
-
paraphrase = tokenizer.decode(line, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
53 |
-
paraphrases.append(f"{i}. {paraphrase}")
|
54 |
-
|
55 |
-
return "\n".join(paraphrases)
|
56 |
-
|
57 |
-
# Precision, Recall, and Overall Accuracy Calculation
|
58 |
-
def calculate_precision_recall_accuracy(sentences):
|
59 |
-
total_similarity = 0
|
60 |
-
paraphrase_count = 0
|
61 |
-
total_precision = 0
|
62 |
-
total_recall = 0
|
63 |
-
|
64 |
-
for sentence in sentences:
|
65 |
-
paraphrases = paraphrase_sentence(sentence).split("\n")
|
66 |
-
|
67 |
-
# Get the original embedding and token counts
|
68 |
-
original_embedding = get_sentence_embedding(sentence)
|
69 |
-
original_tokens = Counter(sentence.lower().split())
|
70 |
-
|
71 |
-
for paraphrase in paraphrases:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModel, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from collections import Counter
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
# Load paraphrase model and tokenizer
|
10 |
+
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
|
11 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model = model.to(device)
|
15 |
+
|
16 |
+
# Load Sentence-BERT model for semantic similarity calculation
|
17 |
+
embed_model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
18 |
+
embed_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
19 |
+
embed_model = embed_model.to(device)
|
20 |
+
|
21 |
+
# Function to get sentence embeddings
|
22 |
+
def get_sentence_embedding(sentence):
|
23 |
+
inputs = embed_tokenizer(sentence, return_tensors="pt", padding=True).to(device)
|
24 |
+
with torch.no_grad():
|
25 |
+
embeddings = embed_model(**inputs).last_hidden_state.mean(dim=1)
|
26 |
+
return embeddings
|
27 |
+
|
28 |
+
# Paraphrasing function
|
29 |
+
def paraphrase_sentence(sentence):
|
30 |
+
if not sentence.strip():
|
31 |
+
return "Please enter a valid sentence."
|
32 |
+
|
33 |
+
# Updated prompt for statement-like output
|
34 |
+
text = "rephrase as a statement: " + sentence
|
35 |
+
encoding = tokenizer.encode_plus(text, padding=False, return_tensors="pt")
|
36 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
37 |
+
|
38 |
+
beam_outputs = model.generate(
|
39 |
+
input_ids=input_ids,
|
40 |
+
attention_mask=attention_masks,
|
41 |
+
do_sample=True,
|
42 |
+
max_length=128,
|
43 |
+
top_k=40,
|
44 |
+
top_p=0.85,
|
45 |
+
early_stopping=True,
|
46 |
+
num_return_sequences=5
|
47 |
+
)
|
48 |
+
|
49 |
+
# Decode and format paraphrases with numbering
|
50 |
+
paraphrases = []
|
51 |
+
for i, line in enumerate(beam_outputs, 1):
|
52 |
+
paraphrase = tokenizer.decode(line, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
53 |
+
paraphrases.append(f"{i}. {paraphrase}")
|
54 |
+
|
55 |
+
return "\n".join(paraphrases)
|
56 |
+
|
57 |
+
# Precision, Recall, and Overall Accuracy Calculation
|
58 |
+
def calculate_precision_recall_accuracy(sentences):
|
59 |
+
total_similarity = 0
|
60 |
+
paraphrase_count = 0
|
61 |
+
total_precision = 0
|
62 |
+
total_recall = 0
|
63 |
+
|
64 |
+
for sentence in sentences:
|
65 |
+
paraphrases = paraphrase_sentence(sentence).split("\n")
|
66 |
+
|
67 |
+
# Get the original embedding and token counts
|
68 |
+
original_embedding = get_sentence_embedding(sentence)
|
69 |
+
original_tokens = Counter(sentence.lower().split())
|
70 |
+
|
71 |
+
for paraphrase in paraphrases:
|
72 |
+
if not paraphrase.strip():
|
73 |
+
continue
|
74 |
+
# Remove numbering before evaluation
|
75 |
+
paraphrase_text = paraphrase.split(". ", 1)[1] if ". " in paraphrase else paraphrase
|
76 |
+
paraphrase_embedding = get_sentence_embedding(paraphrase_text)
|
77 |
+
similarity = cosine_similarity(original_embedding.cpu(), paraphrase_embedding.cpu())[0][0]
|
78 |
+
total_similarity += similarity
|
79 |
+
|
80 |
+
# Calculate precision and recall based on token overlap
|
81 |
+
paraphrase_tokens = Counter(paraphrase_text.lower().split())
|
82 |
+
overlap = sum((paraphrase_tokens & original_tokens).values())
|
83 |
+
precision = overlap / sum(paraphrase_tokens.values()) if paraphrase_tokens else 0
|
84 |
+
recall = overlap / sum(original_tokens.values()) if original_tokens else 0
|
85 |
+
|
86 |
+
total_precision += precision
|
87 |
+
total_recall += recall
|
88 |
+
paraphrase_count += 1
|
89 |
+
|
90 |
+
# Calculate averages for accuracy, precision, and recall
|
91 |
+
overall_accuracy = (total_similarity / paraphrase_count) * 100 if paraphrase_count else 0
|
92 |
+
avg_precision = (total_precision / paraphrase_count) * 100 if paraphrase_count else 0
|
93 |
+
avg_recall = (total_recall / paraphrase_count) * 100 if paraphrase_count else 0
|
94 |
+
|
95 |
+
return (f"**Overall Model Accuracy (Semantic Similarity):** {overall_accuracy:.2f}%\n"
|
96 |
+
f"**Average Precision (Token Overlap):** {avg_precision:.2f}%\n"
|
97 |
+
f"**Average Recall (Token Overlap):** {avg_recall:.2f}%")
|
98 |
+
|
99 |
+
# Custom CSS for aesthetic design
|
100 |
+
custom_css = """
|
101 |
+
body {
|
102 |
+
background: linear-gradient(135deg, #e0e7ff, #c3dafe, #e0e7ff);
|
103 |
+
font-family: 'Inter', sans-serif;
|
104 |
+
}
|
105 |
+
.gradio-container {
|
106 |
+
max-width: 800px !important;
|
107 |
+
margin: auto;
|
108 |
+
padding: 20px;
|
109 |
+
background: white;
|
110 |
+
border-radius: 20px;
|
111 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
|
112 |
+
}
|
113 |
+
h1 {
|
114 |
+
font-size: 2.5rem;
|
115 |
+
font-weight: 700;
|
116 |
+
background: linear-gradient(to right, #4f46e5, #7c3aed);
|
117 |
+
-webkit-background-clip: text;
|
118 |
+
-webkit-text-fill-color: transparent;
|
119 |
+
text-align: center;
|
120 |
+
margin-bottom: 1rem;
|
121 |
+
}
|
122 |
+
textarea, input {
|
123 |
+
border: 2px solid #e0e7ff !important;
|
124 |
+
border-radius: 10px !important;
|
125 |
+
padding: 15px !important;
|
126 |
+
transition: all 0.3s ease !important;
|
127 |
+
}
|
128 |
+
textarea:hover, input:hover {
|
129 |
+
border-color: #a5b4fc !important;
|
130 |
+
box-shadow: 0 0 10px rgba(79, 70, 229, 0.2) !important;
|
131 |
+
}
|
132 |
+
textarea:focus, input:focus {
|
133 |
+
border-color: #4f46e5 !important;
|
134 |
+
box-shadow: 0 0 15px rgba(79, 70, 229, 0.3) !important;
|
135 |
+
}
|
136 |
+
button {
|
137 |
+
background: linear-gradient(to right, #4f46e5, #7c3aed) !important;
|
138 |
+
color: white !important;
|
139 |
+
font-weight: 600 !important;
|
140 |
+
padding: 12px 24px !important;
|
141 |
+
border-radius: 10px !important;
|
142 |
+
border: none !important;
|
143 |
+
transition: all 0.3s ease !important;
|
144 |
+
}
|
145 |
+
button:hover {
|
146 |
+
background: linear-gradient(to right, #4338ca, #6d28d9) !important;
|
147 |
+
transform: scale(1.05) !important;
|
148 |
+
box-shadow: 0 5px 15px rgba(79, 70, 229, 0.4) !important;
|
149 |
+
}
|
150 |
+
button:disabled {
|
151 |
+
background: linear-gradient(to right, #a3a3a3, #d1d5db) !important;
|
152 |
+
transform: none !important;
|
153 |
+
box-shadow: none !important;
|
154 |
+
}
|
155 |
+
.output-text {
|
156 |
+
background: #f9fafb !important;
|
157 |
+
border-radius: 10px !important;
|
158 |
+
padding: 15px !important;
|
159 |
+
border: 1px solid #e5e7eb !important;
|
160 |
+
transition: all 0.3s ease !important;
|
161 |
+
}
|
162 |
+
.output-text:hover {
|
163 |
+
background: #eff6ff !important;
|
164 |
+
border-color: #a5b4fc !important;
|
165 |
+
}
|
166 |
+
footer {
|
167 |
+
display: none !important;
|
168 |
+
}
|
169 |
+
"""
|
170 |
+
|
171 |
+
# Custom JavaScript for additional interactivity
|
172 |
+
custom_js = """
|
173 |
+
<script>
|
174 |
+
document.addEventListener('DOMContentLoaded', () => {
|
175 |
+
const textarea = document.querySelector('textarea');
|
176 |
+
const button = document.querySelector('button');
|
177 |
+
|
178 |
+
// Add typing animation effect
|
179 |
+
textarea.addEventListener('input', () => {
|
180 |
+
textarea.style.transform = 'scale(1.02)';
|
181 |
+
setTimeout(() => {
|
182 |
+
textarea.style.transform = 'scale(1)';
|
183 |
+
}, 200);
|
184 |
+
});
|
185 |
+
|
186 |
+
// Button click animation
|
187 |
+
button.addEventListener('click', () => {
|
188 |
+
if (!button.disabled) {
|
189 |
+
button.style.transform = 'scale(0.95)';
|
190 |
+
setTimeout(() => {
|
191 |
+
button.style.transform = 'scale(1)';
|
192 |
+
}, 200);
|
193 |
+
}
|
194 |
+
});
|
195 |
+
});
|
196 |
+
</script>
|
197 |
+
"""
|
198 |
+
|
199 |
+
# Define Gradio UI with enhanced aesthetics
|
200 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, js=custom_js) as demo:
|
201 |
+
gr.Markdown(
|
202 |
+
"""
|
203 |
+
# PARA-GEN: Aesthetic Paraphraser
|
204 |
+
Enter a sentence below to generate five beautifully rephrased statements.
|
205 |
+
"""
|
206 |
+
)
|
207 |
+
|
208 |
+
with gr.Row():
|
209 |
+
with gr.Column(scale=3):
|
210 |
+
input_text = gr.Textbox(
|
211 |
+
label="Input Sentence",
|
212 |
+
placeholder="Type your sentence here...",
|
213 |
+
lines=4,
|
214 |
+
max_lines=4
|
215 |
+
)
|
216 |
+
paraphrase_button = gr.Button("Generate Paraphrases")
|
217 |
+
|
218 |
+
with gr.Column(scale=2):
|
219 |
+
output_text = gr.Textbox(
|
220 |
+
label="Paraphrased Results",
|
221 |
+
lines=10,
|
222 |
+
interactive=False
|
223 |
+
)
|
224 |
+
|
225 |
+
with gr.Accordion("Model Performance Metrics", open=False):
|
226 |
+
metrics_output = gr.Markdown()
|
227 |
+
|
228 |
+
# Define button click behavior
|
229 |
+
paraphrase_button.click(
|
230 |
+
fn=paraphrase_sentence,
|
231 |
+
inputs=input_text,
|
232 |
+
outputs=output_text
|
233 |
+
)
|
234 |
+
|
235 |
+
# Calculate and display metrics on load
|
236 |
+
test_sentences = [
|
237 |
+
"The quick brown fox jumps over the lazy dog.",
|
238 |
+
"Artificial intelligence is transforming industries.",
|
239 |
+
"The weather is sunny and warm today.",
|
240 |
+
"He enjoys reading books on machine learning.",
|
241 |
+
"The stock market fluctuates daily due to various factors."
|
242 |
+
]
|
243 |
+
demo.load(
|
244 |
+
fn=calculate_precision_recall_accuracy,
|
245 |
+
inputs=None,
|
246 |
+
outputs=metrics_output,
|
247 |
+
_js="() => { return ['" + "', '".join(test_sentences) + "']; }"
|
248 |
+
)
|
249 |
+
|
250 |
+
# Launch Gradio app
|
251 |
+
demo.launch(share=False)
|