from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModel, AutoTokenizer import torch from sklearn.metrics.pairwise import cosine_similarity import numpy as np import gradio as gr from collections import Counter import pandas as pd # Load paraphrase model and tokenizer model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser') tokenizer = T5Tokenizer.from_pretrained('t5-base') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # Load Sentence-BERT model for semantic similarity calculation embed_model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') embed_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') embed_model = embed_model.to(device) # Function to get sentence embeddings def get_sentence_embedding(sentence): inputs = embed_tokenizer(sentence, return_tensors="pt", padding=True).to(device) with torch.no_grad(): embeddings = embed_model(**inputs).last_hidden_state.mean(dim=1) return embeddings # Paraphrasing function def paraphrase_sentence(sentence): # Updated prompt for statement-like output text = "rephrase as a statement: " + sentence encoding = tokenizer.encode_plus(text, padding=False, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=128, top_k=40, # Reduced top_k for less randomness top_p=0.85, # Reduced top_p for focused sampling early_stopping=True, num_return_sequences=5 # Generate 5 paraphrases ) # Decode and format paraphrases with numbering paraphrases = [] for i, line in enumerate(beam_outputs, 1): paraphrase = tokenizer.decode(line, skip_special_tokens=True, clean_up_tokenization_spaces=True) paraphrases.append(f"{i}. {paraphrase}") return "\n".join(paraphrases) # Precision, Recall, and Overall Accuracy Calculation def calculate_precision_recall_accuracy(sentences): total_similarity = 0 paraphrase_count = 0 total_precision = 0 total_recall = 0 for sentence in sentences: paraphrases = paraphrase_sentence(sentence).split("\n") # Get the original embedding and token counts original_embedding = get_sentence_embedding(sentence) original_tokens = Counter(sentence.lower().split()) for paraphrase in paraphrases: # Remove numbering before evaluation paraphrase = paraphrase.split(". ", 1)[1] paraphrase_embedding = get_sentence_embedding(paraphrase) similarity = cosine_similarity(original_embedding.cpu(), paraphrase_embedding.cpu())[0][0] total_similarity += similarity # Calculate precision and recall based on token overlap paraphrase_tokens = Counter(paraphrase.lower().split()) overlap = sum((paraphrase_tokens & original_tokens).values()) precision = overlap / sum(paraphrase_tokens.values()) if paraphrase_tokens else 0 recall = overlap / sum(original_tokens.values()) if original_tokens else 0 total_precision += precision total_recall += recall paraphrase_count += 1 # Calculate averages for accuracy, precision, and recall overall_accuracy = (total_similarity / paraphrase_count) * 100 avg_precision = (total_precision / paraphrase_count) * 100 avg_recall = (total_recall / paraphrase_count) * 100 print(f"Overall Model Accuracy (Semantic Similarity): {overall_accuracy:.2f}%") print(f"Average Precision (Token Overlap): {avg_precision:.2f}%") print(f"Average Recall (Token Overlap): {avg_recall:.2f}%") # Define Gradio UI iface = gr.Interface( fn=paraphrase_sentence, inputs="text", outputs="text", title="PARA-GEN (T5 Paraphraser)", description="Enter a sentence, and the model will generate five numbered paraphrases in statement form." ) # List of test sentences to evaluate metrics test_sentences = [ "The quick brown fox jumps over the lazy dog.", "Artificial intelligence is transforming industries.", "The weather is sunny and warm today.", "He enjoys reading books on machine learning.", "The stock market fluctuates daily due to various factors." ] # Calculate overall accuracy, precision, and recall for the list of test sentences calculate_precision_recall_accuracy(test_sentences) # Launch Gradio app (Gradio UI will not show metrics) iface.launch(share=False)