gaurav0026's picture
Update gradio_app.py
1fff74a verified
import gradio as gr
import pickle as pk
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
import os
# Get the absolute path of the current directory
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, 'model.pkl')
scaler_path = os.path.join(current_dir, 'scaler.pkl')
def load_model_and_vectorizer():
try:
if not os.path.exists(model_path) or not os.path.exists(scaler_path):
return None, None, f"Error: Model files not found at:\n{model_path}\n{scaler_path}"
model = pk.load(open(model_path, 'rb'))
vectorizer = pk.load(open(scaler_path, 'rb'))
return model, vectorizer, None
except Exception as e:
return None, None, f"Error loading model: {str(e)}"
# Load the model and vectorizer
model, vectorizer, error = load_model_and_vectorizer()
def predict_sentiment(review):
if error:
return error
if not review:
return "Please enter a review first!"
try:
# Vectorize the text
review_vector = vectorizer.transform([review])
# Make prediction
result = model.predict(review_vector)[0]
if result == 0:
return "Negative Review 😞"
else:
return "Positive Review 😊"
except Exception as e:
return f"Error during prediction: {str(e)}"
# Modern and aesthetic CSS adapted from the dashboard
css = """
body {
background: linear-gradient(180deg, #2c3e50 0%, #3498db 100%);
margin: 0;
font-family: 'Roboto', -apple-system, BlinkMacSystemFont, sans-serif;
color: #ecf0f1;
}
.gradio-container {
max-width: 800px;
margin: 3rem auto;
background: rgba(44, 62, 80, 0.9);
border-radius: 20px;
padding: 2.5rem;
box-shadow: 0 12px 40px rgba(0, 0, 0, 0.3);
backdrop-filter: blur(10px);
transition: transform 0.3s ease;
}
.gradio-container:hover {
transform: translateY(-5px);
}
.header {
text-align: center;
margin-bottom: 2rem;
animation: fadeIn 1s ease-in-out;
}
.header h1 {
font-size: 2.4rem;
background: linear-gradient(45deg, #e74c3c, #f1c40f);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
font-weight: 700;
}
.header p {
font-size: 1.2rem;
color: #bdc3c7;
margin-top: 0.5rem;
font-weight: 300;
}
.review-input {
background: rgba(255, 255, 255, 0.1);
border: 2px solid #4ECDC4;
border-radius: 12px;
padding: 1.5rem;
font-size: 1.1rem;
color: #ecf0f1;
width: 100%;
box-sizing: border-box;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
transition: all 0.3s ease;
}
.review-input:focus {
border-color: #f1c40f;
box-shadow: 0 6px 20px rgba(241, 196, 15, 0.3);
outline: none;
transform: scale(1.01);
}
.review-input::placeholder {
color: #95a5a6;
font-style: italic;
}
.submit-btn {
background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
color: white;
border: none;
padding: 1rem 3rem;
border-radius: 50px;
font-size: 1.1rem;
font-weight: 600;
cursor: pointer;
margin: 1.5rem auto;
display: block;
transition: all 0.3s ease;
box-shadow: 0 6px 20px rgba(78, 205, 196, 0.4);
}
.submit-btn:hover {
background: linear-gradient(45deg, #4ECDC4, #FF6B6B);
transform: translateY(-3px) scale(1.05);
box-shadow: 0 10px 25px rgba(78, 205, 196, 0.5);
}
.submit-btn:active {
transform: translateY(0);
box-shadow: 0 4px 15px rgba(78, 205, 196, 0.3);
}
.output-container {
margin-top: 2rem;
padding: 1.5rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 15px;
text-align: center;
min-height: 80px;
font-size: 1.3rem;
color: #f1c40f;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
animation: slideUp 0.5s ease-out;
}
.error-message {
background: rgba(231, 76, 60, 0.2);
color: #e74c3c;
padding: 1.2rem;
border-radius: 12px;
margin-bottom: 1.5rem;
border-left: 5px solid #e74c3c;
font-weight: 500;
animation: shake 0.4s ease-in-out;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(-10px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideUp {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes shake {
0%, 100% { transform: translateX(0); }
20%, 60% { transform: translateX(-8px); }
40%, 80% { transform: translateX(8px); }
}
@media (max-width: 600px) {
.gradio-container {
margin: 1rem;
padding: 1.5rem;
}
.header h1 {
font-size: 2rem;
}
.review-input {
padding: 1rem;
}
.submit-btn {
padding: 0.8rem 2rem;
}
}
"""
# Create the Gradio interface
with gr.Blocks(
title="Sentiment Analysis on Traveler Reviews",
theme=gr.themes.Default(
primary_hue="teal",
secondary_hue="pink",
neutral_hue="gray",
radius_size="lg",
),
css=css
) as demo:
gr.Markdown("""
<div class="header">
<h1> Sentiment Analysis on Traveler Reviews</h1>
<p>Type your review and let our AI uncover its vibe!</p>
</div>
""")
if error:
gr.Markdown(f"""
<div class="error-message">
⚠️ {error}
</div>
""")
review_input = gr.Textbox(
placeholder="Share your thoughts about the your experience...",
lines=5,
elem_classes="review-input",
show_label=False
)
predict_btn = gr.Button(
"Analyze Sentiment",
elem_classes="submit-btn"
)
output = gr.Textbox(
placeholder="The sentiment will appear here...",
elem_classes="output-container",
show_label=False,
interactive=False
)
predict_btn.click(
fn=predict_sentiment,
inputs=review_input,
outputs=output
)
if __name__ == "__main__":
demo.launch(share=True)