Upload 7 files
Browse filesInitial code update
- Movie_Review.csv +0 -0
- Movie_review_Model_Creation.ipynb +0 -0
- README.md +19 -14
- gradio_app.py +254 -0
- model.pkl +3 -0
- requirements.txt +4 -0
- scaler.pkl +3 -0
Movie_Review.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Movie_review_Model_Creation.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
CHANGED
@@ -1,14 +1,19 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Traveler Review Sentiment Analysis
|
2 |
+
|
3 |
+
This is a sentiment analysis model that predicts whether a traveller's review is positive or negative. The model uses TF-IDF vectorization and a trained classifier to make predictions.
|
4 |
+
|
5 |
+
## How to Use
|
6 |
+
|
7 |
+
1. Enter your review in the text box
|
8 |
+
2. Click "Analyze Sentiment"
|
9 |
+
3. The model will predict whether the review is positive or negative
|
10 |
+
|
11 |
+
## Model Details
|
12 |
+
|
13 |
+
- Uses TF-IDF vectorization for text preprocessing
|
14 |
+
- Trained on movie review data
|
15 |
+
- Returns either "Positive Review 😊" or "Negative Review 😞"
|
16 |
+
|
17 |
+
## Requirements
|
18 |
+
|
19 |
+
All required packages are listed in `requirements.txt`
|
gradio_app.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle as pk
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Get the absolute path of the current directory
|
8 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
+
model_path = os.path.join(current_dir, 'model.pkl')
|
10 |
+
scaler_path = os.path.join(current_dir, 'scaler.pkl')
|
11 |
+
|
12 |
+
def load_model_and_vectorizer():
|
13 |
+
try:
|
14 |
+
if not os.path.exists(model_path) or not os.path.exists(scaler_path):
|
15 |
+
return None, None, f"Error: Model files not found at:\n{model_path}\n{scaler_path}"
|
16 |
+
|
17 |
+
model = pk.load(open(model_path, 'rb'))
|
18 |
+
vectorizer = pk.load(open(scaler_path, 'rb'))
|
19 |
+
return model, vectorizer, None
|
20 |
+
except Exception as e:
|
21 |
+
return None, None, f"Error loading model: {str(e)}"
|
22 |
+
|
23 |
+
# Load the model and vectorizer
|
24 |
+
model, vectorizer, error = load_model_and_vectorizer()
|
25 |
+
|
26 |
+
def predict_sentiment(review):
|
27 |
+
if error:
|
28 |
+
return error
|
29 |
+
|
30 |
+
if not review:
|
31 |
+
return "Please enter a review first!"
|
32 |
+
|
33 |
+
try:
|
34 |
+
# Vectorize the text
|
35 |
+
review_vector = vectorizer.transform([review])
|
36 |
+
# Make prediction
|
37 |
+
result = model.predict(review_vector)[0]
|
38 |
+
|
39 |
+
if result == 0:
|
40 |
+
return "Negative Review 😞"
|
41 |
+
else:
|
42 |
+
return "Positive Review 😊"
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error during prediction: {str(e)}"
|
45 |
+
|
46 |
+
# Modern and aesthetic CSS adapted from the dashboard
|
47 |
+
css = """
|
48 |
+
body {
|
49 |
+
background: linear-gradient(180deg, #2c3e50 0%, #3498db 100%);
|
50 |
+
margin: 0;
|
51 |
+
font-family: 'Roboto', -apple-system, BlinkMacSystemFont, sans-serif;
|
52 |
+
color: #ecf0f1;
|
53 |
+
}
|
54 |
+
|
55 |
+
.gradio-container {
|
56 |
+
max-width: 800px;
|
57 |
+
margin: 3rem auto;
|
58 |
+
background: rgba(44, 62, 80, 0.9);
|
59 |
+
border-radius: 20px;
|
60 |
+
padding: 2.5rem;
|
61 |
+
box-shadow: 0 12px 40px rgba(0, 0, 0, 0.3);
|
62 |
+
backdrop-filter: blur(10px);
|
63 |
+
transition: transform 0.3s ease;
|
64 |
+
}
|
65 |
+
|
66 |
+
.gradio-container:hover {
|
67 |
+
transform: translateY(-5px);
|
68 |
+
}
|
69 |
+
|
70 |
+
.header {
|
71 |
+
text-align: center;
|
72 |
+
margin-bottom: 2rem;
|
73 |
+
animation: fadeIn 1s ease-in-out;
|
74 |
+
}
|
75 |
+
|
76 |
+
.header h3 {
|
77 |
+
font-size: 2.4rem;
|
78 |
+
background: linear-gradient(45deg, #e74c3c, #f1c40f);
|
79 |
+
-webkit-background-clip: text;
|
80 |
+
-webkit-text-fill-color: transparent;
|
81 |
+
margin: 0;
|
82 |
+
font-weight: 700;
|
83 |
+
}
|
84 |
+
|
85 |
+
.header p {
|
86 |
+
font-size: 1.2rem;
|
87 |
+
color: #bdc3c7;
|
88 |
+
margin-top: 0.5rem;
|
89 |
+
font-weight: 300;
|
90 |
+
}
|
91 |
+
|
92 |
+
.review-input {
|
93 |
+
background: rgba(255, 255, 255, 0.1);
|
94 |
+
border: 2px solid #4ECDC4;
|
95 |
+
border-radius: 12px;
|
96 |
+
padding: 1.5rem;
|
97 |
+
font-size: 1.1rem;
|
98 |
+
color: #ecf0f1;
|
99 |
+
width: 100%;
|
100 |
+
box-sizing: border-box;
|
101 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
|
102 |
+
transition: all 0.3s ease;
|
103 |
+
}
|
104 |
+
|
105 |
+
.review-input:focus {
|
106 |
+
border-color: #f1c40f;
|
107 |
+
box-shadow: 0 6px 20px rgba(241, 196, 15, 0.3);
|
108 |
+
outline: none;
|
109 |
+
transform: scale(1.01);
|
110 |
+
}
|
111 |
+
|
112 |
+
.review-input::placeholder {
|
113 |
+
color: #95a5a6;
|
114 |
+
font-style: italic;
|
115 |
+
}
|
116 |
+
|
117 |
+
.submit-btn {
|
118 |
+
background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
|
119 |
+
color: white;
|
120 |
+
border: none;
|
121 |
+
padding: 1rem 3rem;
|
122 |
+
border-radius: 50px;
|
123 |
+
font-size: 1.1rem;
|
124 |
+
font-weight: 600;
|
125 |
+
cursor: pointer;
|
126 |
+
margin: 1.5rem auto;
|
127 |
+
display: block;
|
128 |
+
transition: all 0.3s ease;
|
129 |
+
box-shadow: 0 6px 20px rgba(78, 205, 196, 0.4);
|
130 |
+
}
|
131 |
+
|
132 |
+
.submit-btn:hover {
|
133 |
+
background: linear-gradient(45deg, #4ECDC4, #FF6B6B);
|
134 |
+
transform: translateY(-3px) scale(1.05);
|
135 |
+
box-shadow: 0 10px 25px rgba(78, 205, 196, 0.5);
|
136 |
+
}
|
137 |
+
|
138 |
+
.submit-btn:active {
|
139 |
+
transform: translateY(0);
|
140 |
+
box-shadow: 0 4px 15px rgba(78, 205, 196, 0.3);
|
141 |
+
}
|
142 |
+
|
143 |
+
.output-container {
|
144 |
+
margin-top: 2rem;
|
145 |
+
padding: 1.5rem;
|
146 |
+
background: rgba(255, 255, 255, 0.05);
|
147 |
+
border-radius: 15px;
|
148 |
+
text-align: center;
|
149 |
+
min-height: 80px;
|
150 |
+
font-size: 1.3rem;
|
151 |
+
color: #f1c40f;
|
152 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
|
153 |
+
animation: slideUp 0.5s ease-out;
|
154 |
+
}
|
155 |
+
|
156 |
+
.error-message {
|
157 |
+
background: rgba(231, 76, 60, 0.2);
|
158 |
+
color: #e74c3c;
|
159 |
+
padding: 1.2rem;
|
160 |
+
border-radius: 12px;
|
161 |
+
margin-bottom: 1.5rem;
|
162 |
+
border-left: 5px solid #e74c3c;
|
163 |
+
font-weight: 500;
|
164 |
+
animation: shake 0.4s ease-in-out;
|
165 |
+
}
|
166 |
+
|
167 |
+
@keyframes fadeIn {
|
168 |
+
from { opacity: 0; transform: translateY(-10px); }
|
169 |
+
to { opacity: 1; transform: translateY(0); }
|
170 |
+
}
|
171 |
+
|
172 |
+
@keyframes slideUp {
|
173 |
+
from { opacity: 0; transform: translateY(20px); }
|
174 |
+
to { opacity: 1; transform: translateY(0); }
|
175 |
+
}
|
176 |
+
|
177 |
+
@keyframes shake {
|
178 |
+
0%, 100% { transform: translateX(0); }
|
179 |
+
20%, 60% { transform: translateX(-8px); }
|
180 |
+
40%, 80% { transform: translateX(8px); }
|
181 |
+
}
|
182 |
+
|
183 |
+
@media (max-width: 600px) {
|
184 |
+
.gradio-container {
|
185 |
+
margin: 1rem;
|
186 |
+
padding: 1.5rem;
|
187 |
+
}
|
188 |
+
|
189 |
+
.header h1 {
|
190 |
+
font-size: 2rem;
|
191 |
+
}
|
192 |
+
|
193 |
+
.review-input {
|
194 |
+
padding: 1rem;
|
195 |
+
}
|
196 |
+
|
197 |
+
.submit-btn {
|
198 |
+
padding: 0.8rem 2rem;
|
199 |
+
}
|
200 |
+
}
|
201 |
+
"""
|
202 |
+
|
203 |
+
# Create the Gradio interface
|
204 |
+
with gr.Blocks(
|
205 |
+
title="Sentiment Analysis on Traveler Reviews",
|
206 |
+
theme=gr.themes.Default(
|
207 |
+
primary_hue="teal",
|
208 |
+
secondary_hue="pink",
|
209 |
+
neutral_hue="gray",
|
210 |
+
radius_size="lg",
|
211 |
+
),
|
212 |
+
css=css
|
213 |
+
) as demo:
|
214 |
+
gr.Markdown("""
|
215 |
+
<div class="header">
|
216 |
+
<h3> Sentiment Analysis on Traveler Reviews</h3>
|
217 |
+
<p>Type your review and let our AI uncover its vibe!</p>
|
218 |
+
</div>
|
219 |
+
""")
|
220 |
+
|
221 |
+
if error:
|
222 |
+
gr.Markdown(f"""
|
223 |
+
<div class="error-message">
|
224 |
+
⚠️ {error}
|
225 |
+
</div>
|
226 |
+
""")
|
227 |
+
|
228 |
+
review_input = gr.Textbox(
|
229 |
+
placeholder="Share your thoughts about the your experience...",
|
230 |
+
lines=5,
|
231 |
+
elem_classes="review-input",
|
232 |
+
show_label=False
|
233 |
+
)
|
234 |
+
|
235 |
+
predict_btn = gr.Button(
|
236 |
+
"Analyze Sentiment",
|
237 |
+
elem_classes="submit-btn"
|
238 |
+
)
|
239 |
+
|
240 |
+
output = gr.Textbox(
|
241 |
+
placeholder="The sentiment will appear here...",
|
242 |
+
elem_classes="output-container",
|
243 |
+
show_label=False,
|
244 |
+
interactive=False
|
245 |
+
)
|
246 |
+
|
247 |
+
predict_btn.click(
|
248 |
+
fn=predict_sentiment,
|
249 |
+
inputs=review_input,
|
250 |
+
outputs=output
|
251 |
+
)
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
demo.launch(share=True)
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d095b620dc4c01338432db9a4e67040ccbff98ea59abf59a0d13800e3f4ebf0
|
3 |
+
size 20713
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.50.0
|
2 |
+
scikit-learn>=1.0.0
|
3 |
+
pandas>=1.3.0
|
4 |
+
numpy>=1.21.0
|
scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56d0af5dc67f06c0602b6b70687d7d1293181f20ab78b7c5da25f7dcab1f6c0e
|
3 |
+
size 265654
|