Spaces:
Runtime error
Runtime error
File size: 14,212 Bytes
c109b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# -*- coding: utf-8 -*-
"""LoanEligibilityPrediction.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/15wGr9tHgIq7Ua4af83Z0UqfAsH8dyOEZ
# IMPORT LIBRERIE
"""
# Commented out IPython magic to ensure Python compatibility.
import numpy as np
import pandas as pd
import seaborn as sns
import gradio as gr
import matplotlib.pyplot as plt
# %matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
"""# COLLEZIONE DATI"""
url = "https://raw.githubusercontent.com/livio-24/LoanEligibilityPrediction/main/dataset.csv"
#caricamento dataset in un pandas dataframe
dataset = pd.read_csv(url)
"""# EXPLORATORY DATA ANALYSIS"""
#prime 5 righe
dataset.head()
#numero righe e colonne
dataset.shape
dataset.describe()
#misure statistiche
#info sulle colonne
#5 variabili numeriche e 8 variabili categoriche
dataset.info()
#Distribuzione variabile target
dataset['Loan_Status'].value_counts()
# numero di valori mancanti in ogni colonna
# verranno gestiti successivamente nella fase di data cleaning
dataset.isnull().sum()
#eliminiamo colonna Loan_ID perché inutile
dataset.drop(columns='Loan_ID', axis = 1, inplace=True)
dataset.head()
"""**DATA VISUALIZATION - ANALISI UNIVARIATA**
VARIABILI CATEGORICHE
"""
#visualizzazione valori variabili catagoriche in percentuale
dataset['Gender'].value_counts(normalize=True).plot.bar(title='Gender')
plt.show()
dataset['Married'].value_counts(normalize=True).plot.bar(title='Married')
plt.show()
dataset['Self_Employed'].value_counts(normalize=True).plot.bar(title='Self_Employed')
plt.show()
dataset['Credit_History'].value_counts(normalize=True).plot.bar(title='Credit_History')
plt.show()
"""Risultati:
- 80% dei candidati nel dataset è maschio
- Circa il 65% dei candidati nel dataset è sposato/a
- Circa il 15% lavora in proprio
- Circa l'85% ha ripagato i propri debiti
VARIABILI ORDINALI
"""
#visualizzazione valori variabili ordinali in percentuale
dataset['Dependents'].value_counts(normalize=True).plot.bar(title='Dependents')
plt.show()
dataset['Education'].value_counts(normalize=True).plot.bar(title='Education')
plt.show()
dataset['Property_Area'].value_counts(normalize=True).plot.bar(title='Property_Area')
plt.show()
"""Risultati:
- La maggior parte dei candidati non ha familiari dipendenti
- Circa l'80% dei candidati ha una laurea
- La maggior parte dei candidati vive in un'area semiurbana
VARIABILI NUMERICHE
"""
#visualizzazione distribuzione variabile 'ApplicantIncome'
sns.distplot(dataset['ApplicantIncome'])
plt.show()
#boxplot per individuazione outliers
dataset.boxplot(['ApplicantIncome'])
plt.show()
#visualizzazione distribuzione variabile 'CoapplicantIncome'
sns.distplot(dataset['CoapplicantIncome'])
plt.show()
#boxplot per individuazione outliers
dataset.boxplot(['CoapplicantIncome'])
plt.show()
#visualizzazione distribuzione variabile 'LoanAmount'
sns.distplot(dataset['LoanAmount'])
plt.show()
dataset.boxplot(['LoanAmount'])
plt.show()
#dataset['LoanAmount'].hist(bins=20)
#visualizzazione distribuzione variabile 'Loan_Amount_Term'
sns.distplot(dataset['Loan_Amount_Term'])
plt.show()
dataset.boxplot(['Loan_Amount_Term'])
plt.show()
"""La maggior parte delle features numeriche ha degli outliers
**Matrice di correlazione**
"""
correlation_matrix = dataset.corr()
# heat map per visualizzare matrice di correlazione
sns.heatmap(correlation_matrix, cbar=True, fmt='.1f', annot=True, cmap='coolwarm')
#plt.savefig('Correlation Heat map', bbox_inches='tight')
"""Non ci sono molte variabili correlate tra di loro, le uniche due sono ApplicantIncome - LoanAmount"""
#conversione variabili categoriche in numeriche
dataset.replace({'Gender':{'Male':0, 'Female':1}, 'Married' :{'No':0, 'Yes':1}, 'Education':{'Not Graduate':0, 'Graduate':1}, 'Self_Employed':{'No':0, 'Yes':1}, 'Property_Area':{'Rural':0, 'Urban':1, 'Semiurban':2}, 'Loan_Status':{'N':0, 'Y':1}}, inplace = True)
# replacing the value of 3+ to 4
dataset['Dependents'].replace(to_replace='3+', value=4, inplace=True)
"""# DATA CLEANING
**CONTROLLO VALORI MANCANTI**
"""
dataset.isnull().sum()
#Sostituiamo i valori mancanti con la moda per le variabili categoriche
dataset['Gender'].fillna(dataset['Gender'].mode()[0], inplace=True)
dataset['Married'].fillna(dataset['Married'].mode()[0], inplace=True)
dataset['Dependents'].fillna(dataset['Dependents'].mode()[0], inplace=True)
dataset['Self_Employed'].fillna(dataset['Self_Employed'].mode()[0], inplace=True)
dataset['Credit_History'].fillna(dataset['Credit_History'].mode()[0], inplace=True)
#Utilizziamo la mediana poiché la variabile ha degli outliers, quindi non è un buon approccio utilizzare la media
dataset['LoanAmount'].fillna(dataset['LoanAmount'].median(), inplace=True)
#dataset['LoanAmount'].fillna(dataset['LoanAmount'].mean(), inplace=True)
dataset['Loan_Amount_Term'].value_counts()
#Nella variabile Loan_Amount_Term possiamo notare che 360 è il valore che si ripete di più, quindi utilizziamo la moda
dataset['Loan_Amount_Term'].fillna(dataset['Loan_Amount_Term'].mode()[0], inplace=True)
dataset.isnull().sum()
#Per trasformare Dtype di Dependents in int
dataset['Dependents'] = dataset['Dependents'].astype(str).astype(int)
dataset.info()
"""**GESTIONE OUTLIERS**"""
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
#Distribuzioni prima di applicare log
sns.histplot(data=dataset, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green')
sns.histplot(data=dataset, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue')
sns.histplot(data=dataset, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange')
# Log Transformation per normalizzare la distribuzione
dataset.ApplicantIncome = np.log(dataset.ApplicantIncome)
dataset.CoapplicantIncome = np.log(dataset.CoapplicantIncome + 1)
dataset.LoanAmount = np.log(dataset.LoanAmount)
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
#Distribuzioni dopo aver applicato log
sns.histplot(data=dataset, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green')
sns.histplot(data=dataset, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue')
sns.histplot(data=dataset, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange')
"""Possiamo notare che la distribuzione è migliorata dopo aver applicato il logaritmo
# SPLIT DATASET
"""
#definizione variabili dipendenti e indipendenti
x = dataset.drop('Loan_Status', axis = 1)
y = dataset['Loan_Status']
#split dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify = y)
print("X_train dataset: ", X_train.shape)
print("y_train dataset: ", y_train.shape)
print("X_test dataset: ", X_test.shape)
print("y_test dataset: ", y_test.shape)
y_test.value_counts()
#Distribuzione della variabile dipendente
plt.figure(figsize=(5,5))
pd.value_counts(dataset['Loan_Status']).plot.bar()
plt.xlabel('Loan_Status')
plt.ylabel('Frequency')
dataset['Loan_Status'].value_counts()
plt.savefig('target_distr', bbox_inches='tight')
"""# DATA SCALING"""
#Normalizzazione
scaler = MinMaxScaler(feature_range=(0, 1))
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
#z-score
#scaler = StandardScaler()
#X_train=scaler.fit_transform(X_train)
#X_test=scaler.transform(X_test)
df = pd.DataFrame(X_train, columns = x.columns)
df
"""# FEATURE SELECTION"""
#feature selection supervisionata
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2, f_classif
from numpy import set_printoptions
fs = SelectKBest(score_func=chi2,k=5)
fs.fit_transform(X_train, y_train)
X_new_train = fs.transform(X_train)
X_new_test = fs.transform(X_test)
print(X_new_train.shape)
x.columns[fs.get_support(indices=True)]
print("features selezionate: ", x.columns[fs.get_support(indices=True)].tolist())
"""# COSTRUZIONE MODELLI"""
models = []
precision = []
accuracy = []
recall = []
f1 = []
"""**LOGISTIC REGRESSION**"""
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, accuracy_score ,recall_score, precision_score, f1_score
logisticRegr = LogisticRegression()
logisticRegr.fit(X_new_train, y_train)
y_train_pred = logisticRegr.predict(X_new_train)
y_test_pred = logisticRegr.predict(X_new_test)
fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(logisticRegr, X_new_test, y_test, ax=ax)
plt.show()
#print(confusion_matrix(y_test, y_test_pred))
#Risultati ottenuti
print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
models.append('Logistic Regression')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))
"""**DECISION TREE**"""
from sklearn.tree import DecisionTreeClassifier
tree_model = DecisionTreeClassifier( random_state=42)
tree_model.fit(X_new_train, y_train)
y_train_pred = tree_model.predict(X_new_train)
y_test_pred = tree_model.predict(X_new_test)
fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(logisticRegr, X_new_test, y_test, ax=ax)
plt.show()
print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
models.append('Decision Tree')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))
"""**NAIVE BAYES**"""
from sklearn.naive_bayes import GaussianNB
NB = GaussianNB()
NB.fit(X_new_train, y_train)
y_train_pred = NB.predict(X_new_train)
y_test_pred = NB.predict(X_new_test)
fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(NB, X_new_test, y_test, ax=ax)
plt.show()
print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
models.append('Naive Bayes')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))
"""**RANDOM FOREST**"""
from sklearn.ensemble import RandomForestClassifier
RandomForest = RandomForestClassifier()
RandomForest.fit(X_new_train, y_train)
y_train_pred = RandomForest.predict(X_new_train)
y_test_pred = RandomForest.predict(X_new_test)
fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(RandomForest, X_new_test, y_test, ax=ax)
plt.show()
print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
models.append('Random Forest')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))
"""**XGBOOST**"""
from xgboost import XGBClassifier
XGB = XGBClassifier()
XGB.fit(X_new_train, y_train)
y_train_pred = XGB.predict(X_new_train)
y_test_pred = XGB.predict(X_new_test)
fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(XGB, X_new_test, y_test, ax=ax)
plt.show()
print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
models.append('XGBoost')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))
"""**CONFRONTO METRICHE**"""
compare = pd.DataFrame({'Model': models,
'Accuracy': accuracy,
'Precision': precision,
'Recall': recall,
'f1_score': f1})
compare.sort_values(by='Accuracy', ascending=False)
#print(compare.to_latex())
def loan(Gender, Married, Dependents, Education, Self_Employed, ApplicantIncome, CoapplicantIncome, LoanAmount, Loan_Amount_Term, Credit_History, Property_Area):
#turning the arguments into a numpy array
Marr = 0 if Married == 'No' else 1
Educ = 0 if Education == 'Not Graduate' else 1
CredHis = 0 if Credit_History == '0: bad credit history' else 1
Dep = 4 if Dependents == '3+' else Dependents
Gen = 0 if Gender == 'Male' else 1
Self_Empl = 0 if Self_Employed == 'No' else 1
if Property_Area == 'Rural': PA = 0
elif Property_Area == 'Urban': PA = 1
else: PA = 2
instance = np.array([Marr, Educ, CoapplicantIncome, CredHis, PA, Gen, Self_Empl, Dependents, ApplicantIncome, LoanAmount, Loan_Amount_Term])
#reshaping into 2D array
instance_resh = instance.reshape(1,-1)
new_instance_resh = scaler.transform(instance_resh)
new_instance_resh = np.delete(new_instance_resh, [5,6,7,8,9,10], axis=1)
prediction = logisticRegr.predict(new_instance_resh)
return ("Loan approved" if prediction[0] == 1 else "Loan not approved")
app = gr.Interface(fn=loan,
inputs=[gr.Radio(['Male', 'Female']),
gr.Radio(['Yes', 'No']),
gr.Radio(['0', '1', '2', '3+']),
gr.Radio(['Graduate', 'Not Graduate']),
gr.Radio(['Yes', 'No']),
"number",
"number",
"number",
"number",
gr.Radio(['0: bad credit history', '1: good credit history']),
gr.Radio(['Urban', 'Semiurban', 'Rural'])],
outputs="text",
title = "Loan Eligibility Prediction")
app.launch(debug=True) |