text2Sql_GEN_AI / app.py
gauravparajuli's picture
Upload 3 files
06a2e89 verified
from dotenv import load_dotenv
import streamlit as st
import sqlite3
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
load_dotenv()
# function to retrieve data from the database
def read_sql_query(sql, db):
print(sql)
conn = sqlite3.connect(db)
cursor = conn.cursor()
rows = cursor.execute(sql)
# for row in rows:
# print(row)
return rows
model = ChatOpenAI(model='gpt-4o-mini')
system_prompt = """
You are an expert in converting English questions to SQL code!
the sql database consists of table 'student' which has columns
'name', 'class' and 'section'.
Example 1:
Input: How many entries of records are present?
Output: SELECT COUNT(*) FROM student;
Example 2:
Input: List all the students in the frontend class.
Output: SELECT * FROM student WHERE class='frontend';
also, sql code should not have ``` in neither beginning nor end.
also, if given query cannot be converted to sql, return
"Given query cannot be converted to SQL"
"""
prompt_template = ChatPromptTemplate.from_messages(
[
('system', system_prompt),
('human', '{input}')
]
)
chain = prompt_template | model | StrOutputParser()
# Streamlit app
st.set_page_config(
page_title='I will retrieve any SQL query'
)
st.header('Retrieve SQL data in plain English')
question = st.text_input(label='Query the database', placeholder='Enter your query in plain english here')
submit = st.button('Query')
if submit:
if question:
sql = chain.invoke({'input': question})
if sql == 'Given query cannot be converted to SQL':
st.subheader('Given query cannot be translated to SQL')
else:
st.subheader('Generated SQL')
st.write(sql)
result = read_sql_query(sql, 'student_records.db')
st.subheader('Retrieved Data')
for row in result:
st.write(row)