gautamraj8044 commited on
Commit
007c6b9
Β·
verified Β·
1 Parent(s): 2dfa165

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -81
app.py DELETED
@@ -1,81 +0,0 @@
1
- import streamlit as st
2
- from streamlit_chat import message
3
- import tempfile
4
- from langchain_huggingface import HuggingFaceEmbeddings
5
- from langchain_community.vectorstores import FAISS
6
- from langchain.chains import ConversationalRetrievalChain
7
- from langchain_community.document_loaders import CSVLoader
8
- from langchain_community.llms.ctransformers import CTransformers
9
- from huggingface_hub import hf_hub_download
10
-
11
- DB_FAISS_PATH = 'vectorstore/db_faiss'
12
-
13
- #Loading the model
14
- def load_llm():
15
- model_path = hf_hub_download(repo_id="TheBloke/Llama-2-7b-chat-GGML", filename="llama-2-7b-chat.ggmlv3.q8_0.bin")
16
- llm = CTransformers(
17
- model = model_path,
18
- model_type="llama",
19
- max_new_tokens = 512,
20
- temperature = 0.5
21
- )
22
- return llm
23
-
24
- st.title("Chat with CSV using Llama2 πŸ¦™πŸ¦œ")
25
-
26
- uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
27
-
28
- if uploaded_file :
29
- #use tempfile because CSVLoader only accepts a file_path
30
- with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
31
- tmp_file.write(uploaded_file.getvalue())
32
- tmp_file_path = tmp_file.name
33
-
34
- loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
35
- 'delimiter': ','})
36
- data = loader.load()
37
- #st.json(data)
38
- embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
39
- model_kwargs={'device': 'cpu'})
40
-
41
- db = FAISS.from_documents(data, embeddings)
42
- db.save_local(DB_FAISS_PATH)
43
- llm = load_llm()
44
- chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
45
-
46
- def conversational_chat(query):
47
- result = chain({"question": query, "chat_history": st.session_state['history']})
48
- st.session_state['history'].append((query, result["answer"]))
49
- return result["answer"]
50
-
51
- if 'history' not in st.session_state:
52
- st.session_state['history'] = []
53
-
54
- if 'generated' not in st.session_state:
55
- st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " πŸ€—"]
56
-
57
- if 'past' not in st.session_state:
58
- st.session_state['past'] = ["Hey ! πŸ‘‹"]
59
-
60
- #container for the chat history
61
- response_container = st.container()
62
- #container for the user's text input
63
- container = st.container()
64
-
65
- with container:
66
- with st.form(key='my_form', clear_on_submit=True):
67
-
68
- user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input')
69
- submit_button = st.form_submit_button(label='Send')
70
-
71
- if submit_button and user_input:
72
- output = conversational_chat(user_input)
73
-
74
- st.session_state['past'].append(user_input)
75
- st.session_state['generated'].append(output)
76
-
77
- if st.session_state['generated']:
78
- with response_container:
79
- for i in range(len(st.session_state['generated'])):
80
- message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
81
- message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")