Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.llms import HuggingFaceHub | |
# Function to return the response | |
def load_answer(question): | |
if not question: | |
return "Please ask a question." | |
# Initialize the Hugging Face model | |
llm = HuggingFaceHub(repo_id="google/flan-t5-large", | |
model_kwargs={"temperature": 0.7}) | |
# Get response from the model | |
answer = llm(question) | |
return answer | |
# App UI starts here | |
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") | |
st.header("LangChain Demo") | |
# Gets the user input | |
def get_text(): | |
input_text = st.text_input("You: ", key="input") | |
return input_text | |
user_input = get_text() | |
submit = st.button('Generate') | |
# If the generate button is clicked | |
if submit: | |
if user_input: | |
response = load_answer(user_input) | |
st.subheader("Answer:") | |
st.write(response) | |
else: | |
st.error("Please enter a question!") | |