import streamlit as st import langchain from langchain.llms import HuggingFaceHub #Function to return the response def load_answer(question): llm = HuggingFaceHub(repo_id="google/flan-t5-large") answer=llm(question) return answer #App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo") #Gets the user input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input=get_text() response = load_answer(user_input) submit = st.button('Generate') #If generate button is clicked if submit: st.subheader("Answer:") st.write(response) #App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo") #Gets the user input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input=get_text() response = load_answer(user_input) submit = st.button('Generate') #If generate button is clicked if submit: st.subheader("Answer:") st.write(response)