Spaces:
Sleeping
Sleeping
gdTharusha
commited on
Commit
•
772383d
1
Parent(s):
95dcecd
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageEnhance
|
3 |
-
import numpy as np
|
4 |
import torch
|
5 |
-
import
|
|
|
6 |
from torchvision.models import resnet34
|
|
|
|
|
|
|
7 |
|
8 |
-
# Load a pre-trained ResNet model
|
9 |
-
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
return upscaled_image
|
24 |
|
@@ -32,21 +39,33 @@ def remaster_image(image, color_range=1.0, sharpness=1.0, hdr_intensity=1.0, ton
|
|
32 |
enhancer = ImageEnhance.Sharpness(image)
|
33 |
image = enhancer.enhance(sharpness)
|
34 |
|
35 |
-
#
|
36 |
enhancer = ImageEnhance.Brightness(image)
|
37 |
image = enhancer.enhance(hdr_intensity)
|
38 |
-
|
39 |
-
# Simulate color grading by adjusting contrast
|
40 |
enhancer = ImageEnhance.Contrast(image)
|
41 |
image = enhancer.enhance(color_grading)
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Process function for Gradio
|
46 |
-
def process_image(image, upscale=False, upscale_factor=2, sharpness=1.0,
|
47 |
-
remaster=False, color_range=1.0, hdr_intensity=1.0, tone_mapping=1.0, color_grading=1.0):
|
48 |
if upscale:
|
49 |
-
image = upscale_image(image, upscale_factor
|
50 |
|
51 |
if remaster:
|
52 |
image = remaster_image(image, color_range, sharpness, hdr_intensity, tone_mapping, color_grading)
|
@@ -64,14 +83,12 @@ with gr.Blocks() as demo:
|
|
64 |
gr.Markdown("### Upscaling Options")
|
65 |
upscale_checkbox = gr.Checkbox(label="Apply Upscaling")
|
66 |
upscale_factor = gr.Slider(1, 8, value=2, label="Upscale Factor")
|
67 |
-
sharpness = gr.Slider(0.5, 2.0, value=1.0, label="Sharpness")
|
68 |
-
contrast = gr.Slider(0.5, 2.0, value=1.0, label="Contrast")
|
69 |
-
brightness = gr.Slider(0.5, 2.0, value=1.0, label="Brightness")
|
70 |
|
71 |
with gr.Group():
|
72 |
gr.Markdown("### Remastering Options")
|
73 |
remaster_checkbox = gr.Checkbox(label="Apply Remastering")
|
74 |
color_range = gr.Slider(0.5, 2.0, value=1.0, label="Dynamic Color Range")
|
|
|
75 |
hdr_intensity = gr.Slider(0.5, 2.0, value=1.0, label="HDR Intensity")
|
76 |
tone_mapping = gr.Slider(0.5, 2.0, value=1.0, label="Tone Mapping")
|
77 |
color_grading = gr.Slider(0.5, 2.0, value=1.0, label="Color Grading")
|
@@ -80,8 +97,7 @@ with gr.Blocks() as demo:
|
|
80 |
|
81 |
process_button.click(
|
82 |
process_image,
|
83 |
-
inputs=[image_input, upscale_checkbox, upscale_factor, sharpness,
|
84 |
-
remaster_checkbox, color_range, hdr_intensity, tone_mapping, color_grading],
|
85 |
outputs=image_output
|
86 |
)
|
87 |
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageEnhance
|
|
|
3 |
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchvision import transforms
|
6 |
from torchvision.models import resnet34
|
7 |
+
from torchvision.models.segmentation import deeplabv3_resnet50
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
|
11 |
+
# Load a pre-trained ResNet model for remastering
|
12 |
+
resnet_model = resnet34(pretrained=True)
|
13 |
+
resnet_model.eval()
|
14 |
|
15 |
+
# Load a pre-trained DeepLab model for segmentation (optional for advanced remastering)
|
16 |
+
deeplab_model = deeplabv3_resnet50(pretrained=True)
|
17 |
+
deeplab_model.eval()
|
18 |
+
|
19 |
+
# Define the upscaling function using super-resolution techniques
|
20 |
+
def upscale_image(image, upscale_factor=2):
|
21 |
+
# Convert the image to a tensor and upscale it using a neural network
|
22 |
+
preprocess = transforms.Compose([
|
23 |
+
transforms.ToTensor(),
|
24 |
+
transforms.Lambda(lambda x: x.unsqueeze(0))
|
25 |
+
])
|
26 |
+
img_tensor = preprocess(image)
|
27 |
+
upscaled_tensor = F.interpolate(img_tensor, scale_factor=upscale_factor, mode='bicubic', align_corners=False)
|
28 |
+
upscaled_image = transforms.ToPILImage()(upscaled_tensor.squeeze())
|
29 |
|
30 |
return upscaled_image
|
31 |
|
|
|
39 |
enhancer = ImageEnhance.Sharpness(image)
|
40 |
image = enhancer.enhance(sharpness)
|
41 |
|
42 |
+
# Apply a simulated HDR effect using tone mapping
|
43 |
enhancer = ImageEnhance.Brightness(image)
|
44 |
image = enhancer.enhance(hdr_intensity)
|
45 |
+
|
|
|
46 |
enhancer = ImageEnhance.Contrast(image)
|
47 |
image = enhancer.enhance(color_grading)
|
48 |
+
|
49 |
+
# Optional: Use segmentation to remaster specific regions
|
50 |
+
input_tensor = transforms.ToTensor()(image).unsqueeze(0)
|
51 |
+
with torch.no_grad():
|
52 |
+
output = deeplab_model(input_tensor)['out'][0]
|
53 |
+
output_predictions = output.argmax(0)
|
54 |
+
|
55 |
+
# Process each segmented region (e.g., sky, water) differently (optional)
|
56 |
+
# Example: Apply a slight blur to the sky region to create a dreamy effect
|
57 |
+
mask = output_predictions.byte().cpu().numpy()
|
58 |
+
segmented_image = np.array(image)
|
59 |
+
segmented_image[mask == 15] = cv2.GaussianBlur(segmented_image[mask == 15], (5, 5), 0)
|
60 |
+
|
61 |
+
final_image = Image.fromarray(segmented_image)
|
62 |
+
|
63 |
+
return final_image
|
64 |
|
65 |
# Process function for Gradio
|
66 |
+
def process_image(image, upscale=False, upscale_factor=2, remaster=False, color_range=1.0, sharpness=1.0, hdr_intensity=1.0, tone_mapping=1.0, color_grading=1.0):
|
|
|
67 |
if upscale:
|
68 |
+
image = upscale_image(image, upscale_factor)
|
69 |
|
70 |
if remaster:
|
71 |
image = remaster_image(image, color_range, sharpness, hdr_intensity, tone_mapping, color_grading)
|
|
|
83 |
gr.Markdown("### Upscaling Options")
|
84 |
upscale_checkbox = gr.Checkbox(label="Apply Upscaling")
|
85 |
upscale_factor = gr.Slider(1, 8, value=2, label="Upscale Factor")
|
|
|
|
|
|
|
86 |
|
87 |
with gr.Group():
|
88 |
gr.Markdown("### Remastering Options")
|
89 |
remaster_checkbox = gr.Checkbox(label="Apply Remastering")
|
90 |
color_range = gr.Slider(0.5, 2.0, value=1.0, label="Dynamic Color Range")
|
91 |
+
sharpness = gr.Slider(0.5, 2.0, value=1.0, label="Sharpness")
|
92 |
hdr_intensity = gr.Slider(0.5, 2.0, value=1.0, label="HDR Intensity")
|
93 |
tone_mapping = gr.Slider(0.5, 2.0, value=1.0, label="Tone Mapping")
|
94 |
color_grading = gr.Slider(0.5, 2.0, value=1.0, label="Color Grading")
|
|
|
97 |
|
98 |
process_button.click(
|
99 |
process_image,
|
100 |
+
inputs=[image_input, upscale_checkbox, upscale_factor, remaster_checkbox, color_range, sharpness, hdr_intensity, tone_mapping, color_grading],
|
|
|
101 |
outputs=image_output
|
102 |
)
|
103 |
|