import gradio as gr from PIL import Image, ImageEnhance import torch import torch.nn.functional as F from torchvision import transforms from torchvision.models import resnet34 from torchvision.models.segmentation import deeplabv3_resnet50 import numpy as np import cv2 # Load a pre-trained ResNet model for remastering resnet_model = resnet34(pretrained=True) resnet_model.eval() # Load a pre-trained DeepLab model for segmentation (optional for advanced remastering) deeplab_model = deeplabv3_resnet50(pretrained=True) deeplab_model.eval() # Define the upscaling function using super-resolution techniques def upscale_image(image, upscale_factor=2): # Convert the image to a tensor and upscale it using a neural network preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.unsqueeze(0)) ]) img_tensor = preprocess(image) upscaled_tensor = F.interpolate(img_tensor, scale_factor=upscale_factor, mode='bicubic', align_corners=False) upscaled_image = transforms.ToPILImage()(upscaled_tensor.squeeze()) return upscaled_image # Define the remastering function def remaster_image(image, color_range=1.0, sharpness=1.0, hdr_intensity=1.0, tone_mapping=1.0, color_grading=1.0): # Adjust color range enhancer = ImageEnhance.Color(image) image = enhancer.enhance(color_range) # Adjust sharpness enhancer = ImageEnhance.Sharpness(image) image = enhancer.enhance(sharpness) # Apply a simulated HDR effect using tone mapping enhancer = ImageEnhance.Brightness(image) image = enhancer.enhance(hdr_intensity) enhancer = ImageEnhance.Contrast(image) image = enhancer.enhance(color_grading) # Optional: Use segmentation to remaster specific regions input_tensor = transforms.ToTensor()(image).unsqueeze(0) with torch.no_grad(): output = deeplab_model(input_tensor)['out'][0] output_predictions = output.argmax(0) # Process each segmented region (e.g., sky, water) differently (optional) # Example: Apply a slight blur to the sky region to create a dreamy effect mask = output_predictions.byte().cpu().numpy() segmented_image = np.array(image) segmented_image[mask == 15] = cv2.GaussianBlur(segmented_image[mask == 15], (5, 5), 0) final_image = Image.fromarray(segmented_image) return final_image # Process function for Gradio def process_image(image, upscale=False, upscale_factor=2, remaster=False, color_range=1.0, sharpness=1.0, hdr_intensity=1.0, tone_mapping=1.0, color_grading=1.0): if upscale: image = upscale_image(image, upscale_factor) if remaster: image = remaster_image(image, color_range, sharpness, hdr_intensity, tone_mapping, color_grading) return image # Gradio UI with gr.Blocks() as demo: with gr.Row(): image_input = gr.Image(label="Upload Image", type="pil") image_output = gr.Image(label="Output Image") with gr.Row(): with gr.Group(): gr.Markdown("### Upscaling Options") upscale_checkbox = gr.Checkbox(label="Apply Upscaling") upscale_factor = gr.Slider(1, 8, value=2, label="Upscale Factor") with gr.Group(): gr.Markdown("### Remastering Options") remaster_checkbox = gr.Checkbox(label="Apply Remastering") color_range = gr.Slider(0.5, 2.0, value=1.0, label="Dynamic Color Range") sharpness = gr.Slider(0.5, 2.0, value=1.0, label="Sharpness") hdr_intensity = gr.Slider(0.5, 2.0, value=1.0, label="HDR Intensity") tone_mapping = gr.Slider(0.5, 2.0, value=1.0, label="Tone Mapping") color_grading = gr.Slider(0.5, 2.0, value=1.0, label="Color Grading") process_button = gr.Button("Process Image") process_button.click( process_image, inputs=[image_input, upscale_checkbox, upscale_factor, remaster_checkbox, color_range, sharpness, hdr_intensity, tone_mapping, color_grading], outputs=image_output ) demo.launch()