geeaiml commited on
Commit
af2fd37
·
verified ·
1 Parent(s): 283167f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the sentiment analysis pipeline
5
+ sentiment_pipeline = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
6
+
7
+ def analyze_sentiment(text):
8
+ if not text.strip():
9
+ return "Please enter some text to analyze."
10
+
11
+ result = sentiment_pipeline(text)[0]
12
+ return f"Predicted Sentiment: {result['label']} stars"
13
+
14
+ # Define the Gradio interface
15
+ with gr.Blocks() as demo:
16
+ gr.Markdown("# Sentiment Analysis using BERT Model")
17
+ gr.Markdown("Enter a sentence or paragraph below and click 'Analyze' to get the predicted sentiment (1 to 5 stars).")
18
+
19
+ text_input = gr.Textbox(label="Input Text", placeholder="Enter your text here...", lines=3)
20
+ analyze_button = gr.Button("Analyze Sentiment")
21
+ output_text = gr.Textbox(label="Predicted Sentiment", interactive=False)
22
+
23
+ examples = [
24
+ "I love this product! It's amazing!",
25
+ "This was the worst experience I've ever had.",
26
+ "The movie was okay, not great but not bad either.",
27
+ "Absolutely fantastic! I would recommend it to everyone."
28
+ ]
29
+
30
+ gr.Examples(examples=examples, inputs=text_input)
31
+ analyze_button.click(analyze_sentiment, inputs=text_input, outputs=output_text)
32
+
33
+ # Launch the Gradio app
34
+ demo.launch()