import gradio as gr from transformers import pipeline # Load the summarization pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def summarize_text(text): if not text.strip(): return "Please enter some text to summarize." summary = summarizer(text, min_length=10, max_length=100, do_sample=False) return summary[0]['summary_text'] # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Text Summarization using BART Model") gr.Markdown("Enter a long piece of text below and click 'Summarize' to generate a concise summary.") text_input = gr.Textbox(label="Input Text", placeholder="Enter your text here...", lines=10) summarize_button = gr.Button("Summarize") output_text = gr.Textbox(label="Summarized Text", lines=5, interactive=False) summarize_button.click(summarize_text, inputs=text_input, outputs=output_text) # Launch the Gradio app demo.launch()