geeaiml commited on
Commit
2d05695
·
verified ·
1 Parent(s): 0e9b82d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the summarization pipeline
5
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
6
+
7
+ def summarize_text(text, min_length, max_length):
8
+ if not text.strip():
9
+ return "Please enter some text to summarize."
10
+
11
+ summary = summarizer(text, min_length=min_length, max_length=max_length, do_sample=False)
12
+ return summary[0]['summary_text']
13
+
14
+ # Define the Gradio interface
15
+ with gr.Blocks() as demo:
16
+ gr.Markdown("# Text Summarization using BART Model")
17
+ gr.Markdown("Enter a long piece of text below and adjust the sliders to set summary length, then click 'Summarize' to generate a concise summary.")
18
+
19
+ text_input = gr.Textbox(label="Input Text", placeholder="Enter your text here...", lines=10)
20
+ min_length_slider = gr.Slider(10, 50, value=10, label="Minimum Summary Length")
21
+ max_length_slider = gr.Slider(50, 150, value=100, label="Maximum Summary Length")
22
+ summarize_button = gr.Button("Summarize")
23
+ output_text = gr.Textbox(label="Summarized Text", lines=5, interactive=False)
24
+
25
+ summarize_button.click(summarize_text, inputs=[text_input, min_length_slider, max_length_slider], outputs=output_text)
26
+
27
+ # Launch the Gradio app
28
+ demo.launch()