geeaiml commited on
Commit
828af2e
·
verified ·
1 Parent(s): f2fe9e4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
4
+ import librosa
5
+ import numpy as np
6
+
7
+ # تحميل النموذج والمعالج من Hugging Face
8
+ model_name = "facebook/wav2vec2-large-xlsr-53"
9
+ model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name, num_labels=7)
10
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
11
+
12
+ # دالة لمعالجة الصوت وتحويله إلى مشاعر
13
+ def recognize_emotion(audio):
14
+ # تحميل الصوت باستخدام librosa
15
+ audio_input, _ = librosa.load(audio, sr=16000)
16
+
17
+ # استخراج الميزات باستخدام Wav2Vec2 Processor
18
+ inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True)
19
+
20
+ # تمرير البيانات عبر النموذج
21
+ with torch.no_grad():
22
+ logits = model(**inputs).logits
23
+
24
+ # تحويل القيم إلى المشاعر
25
+ emotion_map = {
26
+ 0: "Neutral",
27
+ 1: "Happy",
28
+ 2: "Angry",
29
+ 3: "Sad",
30
+ 4: "Surprised",
31
+ 5: "Fearful",
32
+ 6: "Disgusted"
33
+ }
34
+
35
+ # تصنيف الصوت
36
+ predicted_class = torch.argmax(logits, dim=-1).item()
37
+ emotion = emotion_map[predicted_class]
38
+
39
+ return emotion
40
+
41
+ # واجهة Gradio
42
+ iface = gr.Interface(
43
+ fn=recognize_emotion,
44
+ inputs=gr.inputs.Audio(source="microphone", type="filepath"),
45
+ outputs="text",
46
+ title="Speech Emotion Recognition",
47
+ description="Identify the emotion in the speech: Happy, Sad, Angry, Surprised, Neutral, Fearful, or Disgusted."
48
+ )
49
+
50
+ # تشغيل الواجهة
51
+ iface.launch()