File size: 11,467 Bytes
ca6cab8
841fed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6cab8
 
 
 
841fed0
 
ca6cab8
 
 
 
 
 
 
 
 
841fed0
ca6cab8
 
841fed0
ca6cab8
 
 
841fed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6cab8
 
 
 
 
 
 
 
 
 
 
 
 
 
841fed0
 
 
ca6cab8
 
 
 
 
 
 
 
 
841fed0
ca6cab8
 
 
 
 
 
 
 
 
 
 
 
 
841fed0
 
 
ca6cab8
 
 
 
 
 
841fed0
ca6cab8
 
841fed0
ca6cab8
 
 
 
841fed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6cab8
 
 
 
 
841fed0
 
ca6cab8
841fed0
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6cab8
 
 
 
 
 
 
 
 
 
 
 
 
 
841fed0
 
 
ca6cab8
 
 
 
 
 
 
 
841fed0
ca6cab8
 
 
841fed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6cab8
 
 
 
 
 
841fed0
ca6cab8
841fed0
ca6cab8
 
 
 
 
 
 
 
 
 
 
841fed0
 
 
ca6cab8
 
 
 
 
 
841fed0
 
 
 
 
ca6cab8
841fed0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "enhance-me-train.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "machine_shape": "hm",
      "authorship_tag": "ABX9TyN4LuJh6kWhbqxzA5s9sp7k",
      "include_colab_link": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/soumik12345/enhance-me/blob/mirnet/notebooks/enhance_me_train.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "1JryaVhtBHij",
        "outputId": "97ee6a4a-2479-4124-e96a-f0a792bdec46"
      },
      "source": [
        "!git clone https://github.com/soumik12345/enhance-me -b mirnet\n",
        "!pip install -qqq wandb streamlit"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Cloning into 'enhance-me'...\n",
            "remote: Enumerating objects: 89, done.\u001b[K\n",
            "remote: Counting objects: 100% (89/89), done.\u001b[K\n",
            "remote: Compressing objects: 100% (61/61), done.\u001b[K\n",
            "remote: Total 89 (delta 43), reused 63 (delta 23), pack-reused 0\u001b[K\n",
            "Unpacking objects: 100% (89/89), done.\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.7 MB 8.2 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.1 MB 33.4 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 140 kB 74.7 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 97 kB 8.6 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 180 kB 83.6 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 63 kB 2.1 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.3 MB 83.4 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 178 kB 68.0 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 76 kB 6.0 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 111 kB 81.8 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 125 kB 86.7 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 791 kB 67.2 MB/s \n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 374 kB 83.4 MB/s \n",
            "\u001b[?25h  Building wheel for subprocess32 (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for pympler (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for blinker (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "jupyter-console 5.2.0 requires prompt-toolkit<2.0.0,>=1.0.0, but you have prompt-toolkit 3.0.23 which is incompatible.\n",
            "google-colab 1.0.0 requires ipykernel~=4.10, but you have ipykernel 6.5.1 which is incompatible.\n",
            "google-colab 1.0.0 requires ipython~=5.5.0, but you have ipython 7.30.0 which is incompatible.\u001b[0m\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "G_c4VtXWHR5l"
      },
      "source": [
        "import sys\n",
        "sys.path.append(\"./enhance-me\")\n",
        "\n",
        "from PIL import Image\n",
        "from enhance_me import commons\n",
        "from enhance_me.mirnet import MIRNet"
      ],
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "ZpBHbYaMIqP_"
      },
      "source": [
        "#@title MIRNet Train Configs\n",
        "\n",
        "experiment_name = 'lol_dataset_256' #@param {type:\"string\"}\n",
        "image_size = 128 #@param {type:\"integer\"}\n",
        "dataset_label = 'lol' #@param [\"lol\"]\n",
        "apply_random_horizontal_flip = True #@param {type:\"boolean\"}\n",
        "apply_random_vertical_flip = True #@param {type:\"boolean\"}\n",
        "apply_random_rotation = True #@param {type:\"boolean\"}\n",
        "wandb_api_key = '' #@param {type:\"string\"}\n",
        "val_split = 0.1 #@param {type:\"slider\", min:0.1, max:1.0, step:0.1}\n",
        "batch_size = 4 #@param {type:\"integer\"}\n",
        "num_recursive_residual_groups = 3 #@param {type:\"slider\", min:1, max:5, step:1}\n",
        "num_multi_scale_residual_blocks = 2 #@param {type:\"slider\", min:1, max:5, step:1}\n",
        "learning_rate = 1e-4 #@param {type:\"number\"}\n",
        "epsilon = 1e-3 #@param {type:\"number\"}\n",
        "epochs = 50 #@param {type:\"slider\", min:10, max:100, step:5}"
      ],
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 52
        },
        "id": "IVRoedqBIMuH",
        "outputId": "53ca5beb-871a-4ec3-b757-173e09a15331"
      },
      "source": [
        "mirnet = MIRNet(\n",
        "    experiment_name=experiment_name,\n",
        "    wandb_api_key=None if wandb_api_key == '' else wandb_api_key\n",
        ")"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33m19soumik-rakshit96\u001b[0m (use `wandb login --relogin` to force relogin)\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "\n",
              "                    Syncing run <strong><a href=\"https://wandb.ai/19soumik-rakshit96/mirnet/runs/3p3rc341\" target=\"_blank\">lol_dataset_256</a></strong> to <a href=\"https://wandb.ai/19soumik-rakshit96/mirnet\" target=\"_blank\">Weights & Biases</a> (<a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">docs</a>).<br/>\n",
              "\n",
              "                "
            ],
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "O66Iwzx8IsGh",
        "outputId": "0b6f1683-65d1-4737-a32f-d36b331d2bc2"
      },
      "source": [
        "mirnet.build_datasets(\n",
        "    image_size=image_size,\n",
        "    dataset_label=dataset_label,\n",
        "    apply_random_horizontal_flip=apply_random_horizontal_flip,\n",
        "    apply_random_vertical_flip=apply_random_vertical_flip,\n",
        "    apply_random_rotation=apply_random_rotation,\n",
        "    val_split=val_split,\n",
        "    batch_size=batch_size\n",
        ")"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Downloading data from https://github.com/soumik12345/enhance-me/releases/download/v0.1/lol_dataset.zip\n",
            "347176960/347171015 [==============================] - 13s 0us/step\n",
            "347185152/347171015 [==============================] - 13s 0us/step\n",
            "Number of train data points: 436\n",
            "Number of validation data points: 49\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "tsfKrBCsL_Bb"
      },
      "source": [
        "mirnet.build_model(\n",
        "    num_recursive_residual_groups=num_recursive_residual_groups,\n",
        "    num_multi_scale_residual_blocks=num_multi_scale_residual_blocks,\n",
        "    learning_rate=learning_rate,\n",
        "    epsilon=epsilon\n",
        ")"
      ],
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "y3L9wlpkNziL",
        "outputId": "5149f0e7-91f4-450f-c43a-1b6028692bbc"
      },
      "source": [
        "history = mirnet.train(epochs=epochs)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py:1410: CustomMaskWarning: Custom mask layers require a config and must override get_config. When loading, the custom mask layer must be passed to the custom_objects argument.\n",
            "  layer_config = serialize_layer_fn(layer)\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Epoch 1/50\n",
            " 66/218 [========>.....................] - ETA: 2:25 - loss: 0.1721 - peak_signal_noise_ratio: 63.2555"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "daFKbgBkiyzc"
      },
      "source": [
        "for index, low_image_file in enumerate(mirnet.test_low_images):\n",
        "    original_image = Image.open(low_image_file)\n",
        "    enhanced_image = mirnet.infer(original_image)\n",
        "    ground_truth = Image.open(mirnet.test_enhanced_images[index])\n",
        "    commons.plot_results(\n",
        "        [original_image, ground_truth, ground_truth],\n",
        "        [\"Original Image\", \"Ground Truth\", \"Enhanced Image\"],\n",
        "        (18, 18)\n",
        "    )"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "dO-IbNQHkB3R"
      },
      "source": [
        ""
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}