geekyrakshit's picture
added unpaired dataloader
056188b
raw
history blame
2.78 kB
import tensorflow as tf
from typing import List
from ..augmentation import UnpairedAugmentationFactory
class UnpairedLowLightDataset:
def __init__(
self,
image_size: int = 256,
apply_random_horizontal_flip: bool = True,
apply_random_vertical_flip: bool = True,
apply_random_rotation: bool = True,
) -> None:
self.augmentation_factory = UnpairedAugmentationFactory(image_size=image_size)
self.apply_random_horizontal_flip = apply_random_horizontal_flip
self.apply_random_vertical_flip = apply_random_vertical_flip
self.apply_random_rotation = apply_random_rotation
def load_data(self, image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_png(image, channels=3)
image = image / 255.0
return image
def _get_dataset(self, images: List[str], batch_size: int, is_train: bool):
dataset = tf.data.Dataset.from_tensor_slices((images))
dataset = dataset.map(self.load_data, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.map(
self.augmentation_factory.random_crop, num_parallel_calls=tf.data.AUTOTUNE
)
if is_train:
dataset = (
dataset.map(
self.augmentation_factory.random_horizontal_flip,
num_parallel_calls=tf.data.AUTOTUNE,
)
if self.apply_random_horizontal_flip
else dataset
)
dataset = (
dataset.map(
self.augmentation_factory.random_vertical_flip,
num_parallel_calls=tf.data.AUTOTUNE,
)
if self.apply_random_vertical_flip
else dataset
)
dataset = (
dataset.map(
self.augmentation_factory.random_rotate,
num_parallel_calls=tf.data.AUTOTUNE,
)
if self.apply_random_rotation
else dataset
)
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
def get_datasets(
self,
images: List[str],
val_split: float = 0.2,
batch_size: int = 16,
):
split_index = int(len(images) * (1 - val_split))
train_images = images[:split_index]
val_images = images[split_index:]
print(f"Number of train data points: {len(train_images)}")
print(f"Number of validation data points: {len(val_images)}")
train_dataset = self._get_dataset(train_images, batch_size, is_train=True)
val_dataset = self._get_dataset(val_images, batch_size, is_train=False)
return train_dataset, val_dataset